

Moxa Industrial Linux 1 (Debian 9)
Manual for Arm-based Computers

Version 5.1, December 2022

www.moxa.com/products

© 2022 Moxa Inc. All rights reserved.

https://www.moxa.com/products

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers

The software described in this manual is furnished under a license agreement and may be used only in accordance
with the terms of that agreement.

Copyright Notice

© 2022 Moxa Inc. All rights reserved.

Trademarks

The MOXA logo is a registered trademark of Moxa Inc.
All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

• Information in this document is subject to change without notice and does not represent a commitment
on the part of Moxa.

• Moxa provides this document as is, without warranty of any kind, either expressed or implied, including,
but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or
changes to this manual, or to the products and/or the programs described in this manual, at any time.

• Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no
responsibility for its use, or for any infringements on the rights of third parties that may result from its
use.

• This product might include unintentional technical or typographical errors. Changes are periodically
made to the information herein to correct such errors, and these changes are incorporated into new
editions of the publication.

Technical Support Contact Information

www.moxa.com/support

https://www.moxa.com/support

Table of Contents

1. Introduction ... 5
2. Getting Started ... 6

Connecting to Your Arm-based Computer ... 6
Connecting via the Serial Console ... 6
Connecting via the SSH Console ... 8

Managing User Accounts ... 10
Switching to the Root Account ... 10
Creating and Deleting User Accounts .. 10
Disabling the Default User Account ... 10

Configuring Network Settings .. 11
Configuring Ethernet Interfaces .. 11

System Administration ... 12
Querying the System Image Version ... 12
Adjusting the Time ... 12
Setting the Time Zone .. 13

Determining Available Drive Space ... 14
Configuring the Bootloader ... 14

Accessing the Bootloader Menu .. 14
Managing System Bootup .. 15
Installing a System Image ... 19
Configuring Advanced Bootup Settings .. 20
Shutting Down the Device ... 22

3. Advanced Configuration of Peripherals ... 23
Serial Ports ... 23

Changing the Serial Terminal Settings... 23
USB and SD Ports .. 24

Automounting USB and SD Drives .. 24
CAN Bus Interface ... 25

Configuring the Socket CAN Interface ... 25
CAN Bus Programming Guide ... 25

Configuring the Real COM Mode ... 27
Mapping TTY Ports .. 27
Mapping TTY Ports (automatic) .. 28
Mapping TTY Ports (manual) .. 28
Removing Mapped TTY Ports .. 28

4. Configuring Wireless Connectivity .. 29
Configuring the Cellular Connection ... 29

Using Cell_mgmt .. 29
Dial-up Process .. 31
Dial-up Commands ... 31
Cellular Module .. 32
Configuring a NB-IoT/Cat. M1 Connection (UC-2114 and UC-2116 only) .. 36
GPS .. 36

Configuring the Wi-Fi Connection ... 37
Configuring WPA2... 37

Configuring the Bluetooth Connection ... 42
Paring Devices ... 43
Connecting Devices .. 44

5. Security .. 46
Sudo Mechanism ... 46

6. System Boot Up, Recovery, and Update .. 47
Set-to-default Function ... 47
Firmware Update via APT .. 47
Creating a Customized Firmware Image ... 47

7. Programmer's Guide ... 48
Building an Application ... 48

Introduction... 48
Native Compilation ... 48

Cross Compilation .. 48
Example Program—hello.. 49
Makefile Example ... 50

Standard APIs ... 51
Cryptodev ... 51
Watchdog Timer (WDT) ... 51
Real-time Clock (RTC) ... 53
Modbus ... 54

Eco-friendly Modes for Power Conservation ... 55
Using mx-power-mgmt ... 55
Scheduled Awakening Mode ... 55
Conservation Mode ... 56
Setting the SYS LEDs Using mx-power-mgmt... 56
Wake-up From Conservation Mode ... 56
MCU Firmware Upgrade ... 57
Checking the MCU mode ... 57
Viewing the Utility and MCU Firmware Version ... 57
User-defined Actions ... 57

Moxa Platform Libraries .. 58
Error Numbers ... 58
Platform Information .. 59
Buzzer .. 59
Digital I/O ... 60
UART .. 62
LED .. 64
Push Button ... 65

Power Ignition Function (UC-8540 only) ... 67

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 5

1. Introduction

This user manual is applicable to Moxa’s Arm-based computers listed below and covers the complete set of
instructions applicable to all the supported models. Detailed instructions on configuring advanced settings
are covered in Chapter 3 and Chapter 4 of the manual. Before referring to sections in these chapters,
confirm that the hardware specification of your computer model supports the functions/settings covered
therein.

Moxa’s Arm-based Computing Platforms
• UC-2100 Series

• UC-2100-W Series

• UC-3100 Series

• UC-5100 Series

• UC-8100 Series (firmware V3.0.0 and higher)

• UC-8100-ME-T Series

• UC-8100A-ME-T Series

• UC-8200 Series

• UC-8410A Series

• UC-8540 Series

• UC-8580 Series

Moxa Industrial Linux
Moxa Industrial Linux (MIL) is the optimized Linux distribution for Industrial applications and users, which is
released and maintained by Moxa.

The MIL is based on Debian and integrated with several feature sets designed for strengthening and
accelerating user’s application development as well as ensuring the reliability of system deployment.

Furthermore, the major versions of MIL comply with Moxa’s Superior long-term support (SLTS) policy. Moxa
will maintain each version of the MIL for 10 years from its launch date. The extended support (ES) may also
be purchased by request for additional maintenance. This makes MIL an optimal choice as a Linux operating
system for industrial applications.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 6

2. Getting Started

In this chapter, we describe how to configure the basic settings Moxa’s Arm-based computers.

Connecting to Your Arm-based Computer
You will need another computer to connect to the Arm-based computer and log on to the command line
interface. There are two ways to connect: through serial console cable or through Ethernet cable. Refer to
the Hardware Manual to see how to set up the physical connections.

The default login username and password are:

Username: moxa
Password: moxa

The username and password are the same for all serial console and SSH remote log in actions. Root account
login is disabled until you manually create a password for the account. The user moxa is in the sudo group
so you can operate system level commands with this user using the sudo command. For additional details,
see the Sudo Mechanism section in Chapter 5.

 ATTENTION
 For security reasons, we recommend that you disable the default user account and create your own user

accounts.

Connecting via the Serial Console

This method is particularly useful when using the computer for the first time. The signal is transmitted over
a direct serial connection, so you do not need to know either of its two IP addresses in order to connect to
the Arm-based computer. To connect through the serial console, configure your PC’s terminal software using
the following settings.

Serial Console Port Settings
Baudrate 115200 bps
Parity None
Data bits 8
Stop bits 1
Flow Control None
Terminal VT100

Below we show how to use the terminal software to connect to the Arm-based computer in a Linux
environment and in a Windows environment.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 7

Linux Users

 NOTE
 These steps apply to the Linux PC you are using to connect to the Arm-based computer. Do NOT apply

these steps to the Arm-based computer itself.

Take the following steps to connect to the Arm-based computer from your Linux PC.

1. Install minicom from the package repository of your operating system.

For Centos and Fedora:
user@PC1:~# yum -y install minicom

For Ubuntu and Debian:
user@PC2:~# apt-get install minicom

2. Use the minicom –s command to enter the configuration menu and set up the serial port settings.

user@PC1:~# minicom –s

3. Select Serial port setup.

4. Select A to change the serial device. Note that you need to know which device node is connected to the
Arm-based computer.

5. Select E to configure the port settings according to the Serial Console Port Settings table provided.

6. Select Save setup as dfl (from the main configuration menu) to use default values.

7. Select Exit from minicom (from the configuration menu) to leave the configuration menu.

8. Execute minicom after completing the above configurations.

user@PC1:~# minicom

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 8

Windows Users

 NOTE
 These steps apply to the Windows PC you are using to connect to the Arm-based computer. Do NOT apply

these steps to the Arm-based computer itself.

Take the following steps to connect to the Arm-based computer from your Windows PC.

1. Download PuTTY http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to set up a serial
connection with the Arm-based computer in a Windows environment. The figure below shows a simple
example of the configuration that is required.

2. Select the Serial connection type and choose settings that are similar to the Minicom settings.

Connecting via the SSH Console

The Arm-based computer supports SSH connections over an Ethernet network. Use the following default IP
addresses to connect to the Arm-based computer.

Port Default IP
LAN 1 192.168.3.127
LAN 2 192.168.4.127

Linux Users

 NOTE
 These steps apply to the Linux PC you are using to connect to the Arm-based computer. Do NOT apply

these steps to the Arm-based computer itself. Before you run the ssh command, be sure to configure the
IP address of your notebook/PC's Ethernet interface in the range of 192.168.3.0/24 for LAN1 and
192.168.4.0/24 for LAN2.

Use the ssh command from a Linux computer to access the computer’s LAN1 port.

user@PC1:~ ssh moxa@192.168.3.127

Type yes to complete the connection.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 9

The authenticity of host ‘192.168.3.127’ can’t be established.
RSA key fingerprint is 8b:ee:ff:84:41:25:fc:cd:2a:f2:92:8f:cb:1f:6b:2f.
Are you sure you want to continue connection (yes/no)? yes_

 ATTENTION
 Rekey SSH regularly

 In order to secure your system, we suggest doing a regular SSH-rekey, as shown in the following steps:

 When prompted for a passphrase, leave the passphrase empty and press enter.

 For more information about SSH, refer to the following link.

 https://wiki.debian.org/SSH

Windows Users

 NOTE
 These steps apply to the Windows PC you are using to connect to the Arm-based computer. Do NOT apply

these steps to the Arm-based computer itself.

Take the following steps from your Windows PC.

Click on the link http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html to download PuTTY
(free software) to set up an SSH console for the Arm-based computer in a Windows environment. The
following figure shows a simple example of the configuration that is required.

https://wiki.debian.org/SSH

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 10

Managing User Accounts

Switching to the Root Account
You can switch to root account using the sudo -i (or sudo su) command. For security reasons, do not
operate the all commands from the root account.

 NOTE
 Click the following link for more information on the sudo command.

 https://wiki.debian.org/sudo

 ATTENTION
 You might get the permission denied message when using pipe or redirect behavior with a non-root

account.

 You must use ‘sudo su –c’ to run the command instead of using >, <, >>, <<, etc.

 Note: The single quotes enclosing the full command are required.

Creating and Deleting User Accounts
You can use the useradd and userdel commands to create and delete user accounts. Be sure to
reference the main page of these commands to set relevant access privileges for the account. The following
example shows how to create a test1 user in the sudo group whose default login shell is bash and has
home directory at /home/test1:

moxa@Moxa:~# sudo useradd -m -G sudo -s /bin/bash test1

To change the password for test1, use the passwd option along with the new password. Retype the
password to confirm the change.

moxa@Moxa:~# sudo passwd test1
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

To delete the user test1, use the userdel command.

moxa@Moxa:# sudo userdel test1

Disabling the Default User Account

 ATTENTION
 You should first create a user account before you disable the default account.

Use the passwd command to lock the default user account so that the moxa user cannot log in.

root@Moxa:# passwd –l moxa

To unlock the user moxa:

root@Moxa:# passwd –u moxa

https://wiki.debian.org/sudo

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 11

Configuring Network Settings

Configuring Ethernet Interfaces

After the first login, you can configure the Arm-based computer’s network settings to fit your application
better. Note that it is more convenient to manipulate the network interface settings from the serial console
than from an SSH login because an SSH connection can disconnect when there are network issues, and the
connection must be reestablished.

Modifying Network Settings via the Serial Console
In this section, we use the serial console to configure the Arm-based computer’s network settings. Follow
the instructions in the Connecting to the Arm-based Computer section under Getting Started, to access the
Console Utility of the target computer via the serial Console port, and then type cd /etc/network to
change directories.

moxa@Moxa:~$ cd /etc/network/
moxa@Moxa:/etc/network/~$

Type sudo vi interfaces to edit the network configuration file in the vi editor. You can configure the
Arm-based computer’s Ethernet ports to use either static or dynamic (DHCP) IP addresses.

Setting a Static IP address
To set a static IP address for the Arm-based computer, use the iface command to modify the default
gateway, address, network, netmask, and broadcast parameters of the Ethernet interface.

interfaces(5) file used by ifup(8) and ifdown(8)
auto eth0 eth1 lo
iface lo inet loopback

embedded ethernet LAN1
#iface eth0 inet dhcp
iface eth0 inet static
 address 192.168.3.127
 network 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

embedded ethernet LAN2
iface eth1 inet static
 address 192.168.4.127
 network 192.168.4.0
 netmask 255.255.255.0
 broadcast 192.168.4.255~

Setting Dynamic IP Addresses
To configure one or both LAN ports to request an IP address dynamically use the dhcp option in place of the
static in the iface command as follows:

Default Setting for LAN1 Dynamic Setting using DHCP
iface eth0 inet static
 address 192.168.3.127
 network: 192.168.3.0
 netmask 255.255.255.0
 broadcast 192.168.3.255

iface eth0 inet dhcp

embedded ethernet LAN1
iface eth0 inet dhcp

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 12

System Administration

Querying the System Image Version
Use the mx-ver command to check the system image version of your Arm-based computer.

moxa@moxa-tbzkb1090923:# mx-ver
UC-3111-LX version 1.6 Build 22042718

moxa@moxa-tbzkb1090923:# mx-ver -h

Usage: mx-ver [OPTION]
 -a: show product information inline
 -b: show the build time
 -m: show the model name
 -v: show the image version
 -A: show all information
 -M: show the MIL version
 -o: show the image option code
 -h: show the help menu

mx-ver may not be available in older version of system image. If it is not available, you can use the
kversion command.

To check the Arm-based computer’s firmware version, type:

moxa@Moxa:~$ kversion
UC-3111-LX version 1.6

Add the –a option to create a full build version:

moxa@Moxa:~$ kversion -a
UC-3111-LX version 1.6 Build 22042718

Adjusting the Time

The Arm-based computer has two time settings. One is the system time, and the other is the RTC (Real
Time Clock) time kept by the Arm-based computer’s hardware. Use the date command to query the
current system time or set a new system time. Use the hwclock command to query the current RTC time
or set a new RTC time.

Use the date MMDDhhmmYYYY command to set the system time:

MM = Month
DD = Date
hhmm = Hour and minute
YYYY =Year

moxa@Moxa:~$ sudo date 071123192014
Mon Jul 11 23:19:00 UTC 2014

Use the following command to set the RTC time based on system time:

moxa@Moxa:~$ sudo hwclock –w
moxa@Moxa:~$ sudo hwclock
2018-07-31 02:09:00.628145+0000

 NOTE
 Click the following links for more information on date and time:

 https://www.debian.org/doc/manuals/system-administrator/ch-sysadmin-time.html

 https://wiki.debian.org/DateTime

https://www.debian.org/doc/manuals/system-administrator/ch-sysadmin-time.html
https://wiki.debian.org/DateTime

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 13

Setting the Time Zone

There are two ways to configure the Moxa embedded computer’s time zone. One is using the TZ variable.
The other is using the /etc/localtime file.

Using the TZ Variable
The format of the TZ environment variable looks like this:

TZ=<Value>HH[:MM[:SS]][daylight[HH[:MM[:SS]]][,start date[/starttime], enddate[/endtime]]]

Here are some possible settings for the North American Eastern time zone:

1. TZ=EST5EDT
2. TZ=EST0EDT
3. TZ=EST0

In the first case, the reference time is GMT and the stored time values are correct worldwide. A simple
change of the TZ variable can print the local time correctly in any time zone.

In the second case, the reference time is Eastern Standard Time and the only conversion performed is for
Daylight Saving Time. Therefore, there is no need to adjust the hardware clock for Daylight Saving Time
twice per year.

In the third case, the reference time is always the time reported. You can use this option if the hardware
clock on your machine automatically adjusts for Daylight Saving Time, or you would like to manually adjust
the hardware time twice a year.

moxa@Moxa:~$ TZ=EST5EDT
moxa@Moxa:~$ export TZ

You must include the TZ setting in the /etc/rc.local file. The time zone setting will be activated when
you restart the computer.

The following table lists other possible values for the TZ environment variable:

Hours From Greenwich Mean Time (GMT) Value Description
0 GMT Greenwich Mean Time
+1 ECT European Central Time
+2 EET European Eastern Time
+2 ART
+3 EAT Saudi Arabia
+3.5 MET Iran
+4 NET
+5 PLT West Asia
+5.5 IST India
+6 BST Central Asia
+7 VST Bangkok
+8 CTT China
+9 JST Japan
+9.5 ACT Central Australia
+10 AET Eastern Australia
+11 SST Central Pacific
+12 NST New Zealand
-11 MIT Samoa
-10 HST Hawaii
-9 AST Alaska
-8 PST Pacific Standard Time
-7 PNT Arizona
-7 MST Mountain Standard Time
-6 CST Central Standard Time
-5 EST Eastern Standard Time
-5 IET Indiana East
-4 PRT Atlantic Standard Time

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 14

Hours From Greenwich Mean Time (GMT) Value Description
-3.5 CNT Newfoundland
-3 AGT Eastern South America
-3 BET Eastern South America
-1 CAT Azores

Using the localtime File
The local time zone is stored in the /etc/localtime and is used by GNU Library for C (glibc) if no value
has been set for the TZ environment variable. This file is either a copy of the /usr/share/zoneinfo/ file
or a symbolic link to it. The Arm-based computer does not provide /usr/share/zoneinfo/ files. You
should find a suitable time zone information file and write over the original local time file in the Arm-based
computer.

Determining Available Drive Space
To determine the amount of available drive space, use the df command with the –h option. The system will
return the amount of drive space broken down by file system. Here is an example:

moxa@Moxa:~$ df -h
Filesystem Size Used Avail Use% Mounted on
devtmpfs 803M 238M 524M 32% /
/dev/root 803M 238M 524M 32% /
tmpfs 25M 188K 25M 1% /run
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 10M 0 10M 0% /dev
tmpfs 50M 0 50M 0% /run/shm

Configuring the Bootloader

Accessing the Bootloader Menu

To access Bootloader menu of, first connect to Moxa Arm-based computer via serial console port. After
powering on the Arm-based computer, press Ctrl + Backspace or DEL to enter the Bootloader
configuration menu

 NOTE
 If you cannot enter the bootloader menu by pressing , replace the PuTTy tool with the Tera Term

terminal console tool (detailed information is available at: https://ttssh2.osdn.jp/index.html.en.)

--
Model: UC-3111-T-AP-LX
 Boot Loader Version: 1.5.0S03 CPU TYPE: 1GHz
 Build date: Apr 26 2022 - 11:53:22 Serial Number: IMOXA1234567
 LAN1 MAC: 00:90:e8:00:00:41 LAN2 MAC: 00:90:e8:00:00:42
--
 (0) Boot Management (1) Update Firmware
 (2) Advance Setting (3) Go to Linux
--

https://ttssh2.osdn.jp/index.html.en

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 15

Managing System Bootup

Setting Boot Options
By default, Moxa Arm-based computers boot up from the embedded eMMC flash. Some models also provide
an option to boot up from an external SD or USB.

The following is an example of changing first boot priority to SD card and embedded storage is secondary
boot option in case booting from SD card fails:

1. Select (0) Boot Management > (1) Boot Option

2. Choose to boot from external storage first.

3. Choose to disable embedded storage or not. If embedded storage is disabled, Moxa Arm-based
computers will only attempt to boot from SD card. If embedded storage is set to eMMC, Moxa Arm-
based computers will try to boot from eMMC if it fails to boot from SD card.

4. Set External Storage to SD card

--
 Model: UC-3111-T-AP-LX
 Boot Loader Version: 1.5.0S03 CPU TYPE: 1GHz
 Build date: Apr 26 2022 - 11:53:22 Serial Number: IMOXA1234567
 LAN1 MAC: 00:90:e8:00:00:41 LAN2 MAC: 00:90:e8:00:00:42
--
 (0) Set to Default (1) Boot Option
 (2) Advance Boot Option (3) View Current Setting
--
Command>>1
Boot Management : Default
Boot Order : Embedded First
Embedded Storage : eMMC
External Storage : Disabled

Would you like to configure the Boot Option?
0 - No, 1 - Yes (0-1, Enter to abort): 1
Set Boot Order:
 0 - Embedded First, 1 - External First (0-1, Enter to abort): 1
Set Embedded Storage:
 0 - Disabled, 1 - eMMC (0-1, Enter to abort): 1
Set External Storage:
 0 - Disabled ,1 - SD (0-1, Enter to abort): 1

Below is table to describe the possible combinations of boot options configuration and the corresponding
boot action

Set Boot Order Set Embedded
Storage

Set External
Storage

Boot Action

0 – Embedded First 1 – eMMC 0 – Disabled Boot from the eMMC
1 – External First 0 – Disabled 1 – SD or 2 – USB Boot from the external storage

0 – Embedded First 1 – eMMC 1 – SD or 2 – USB
First boot from the eMMC; if it fails,
try to boot from the external storage

1 – External First 1 – eMMC 1 – SD or 2 – USB
Boot from the external storage; if
this fails, try to boot from eMMC

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 16

Preparing a Bootable SD Card

Windows System
1. Unlock the SD card’s write protection switch.

2. Insert the SD card into the corresponding slot on your Windows system.

3. Download win32diskimager from following link.

http://sourceforge.net/projects/win32diskimager/

4. Install and run the win32diskimager.

5. Confirm that the device name matches the USB device.

6. Select the image file.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 17

7. Confirm that you have selected the correct image file and click Write.

8. When finished, click OK.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 18

Linux System
1. Unlock the SD card’s write protection switch.

2. Insert the SD card into the corresponding slot on you Linux system.

3. Use the dmesg command to determine the device node.

4. Use the dd command to configure the image on the SD card.

moxa@Moxa:/home/work# sudo dd if=./140
42420.img of=/dev/sdd
bs=512k
1954+0 records in
1954+0 records out
1024458752 bytes (1.0 GB) copied, 119.572 s, 8.6 MB/s

 NOTE
 For additional information on the dd command, click the following link.

 http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html

Configuring Advanced Boot Options
Allow advanced users to edit the bootargs and bootcmd parameters to customize the boot process.

• bootargs: Used to tell the kernel how to configure various device drivers and where to find the root
filesystem.

• bootcmd: Bootloader will execute the commands listed sequentially. Commands should be separated
by semicolons.

http://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 19

Installing a System Image

Install the System Image From TFTP
1. Prepare a TFTP server

2. Set up a TFTP server.

3. Make sure the image (*.img) file is in your TFTP server directory.

 IMPORTANT!
 Use this method to install a system image on your computer if the size of the image file is less than 2 GB.

If the file size is larger than 2 GB, use the SD card or USB to install the system image.

4. Select (1) Install System Image > (3) TFTP Settings to configure following:

a. The LAN port to be used for TFTP transfer.

b. Local IP address of LAN port

c. TFTP server IP

5. Press ESC to exist and select (0) Install System Image from TFTP.

If you want to change the TFTP IP address, enter 1 to set the local LAN port IP address and the TFTP
server IP address, and choose an image (*.img) file

Current IP Address

Local IP Address : 192.168.1.2
Server IP Address : 192.168.2.3
Using LAN2 to download data.
Do you want to change the ip address?
0 - No, 1 - Yes(0-1, Enter to abort):1
Local IP Address : 192.168.31.134
Server IP Address : 192.168.31.132
Saving Environment to SPI Flash...
Erasing SPI flash...Writing to SPI flash...done
Valid environment: 2
System Image File Name (system image.img): IMG_UC-3100 v2.0.img

6. After the system image installation process is complete, unplug the power supply and reboot the
system.

7. After rebooting the system, you can use the following command to check if the system image is up to
date.

moxa@moxa-tbzkb1090923:# sudo mx-ver
UC-3111-T-AP-LX version 2.0

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 20

Updating the System Image From an SD or USB Device
The system image of Moxa Arm-based computers can be installed through an external SD or USB disk.
Prepare a USB or SD disk in FAT32 or ext4 format with the system image and plug it into USB or SD port of
the computer.

1. Select (1) Install System Image > (1) Install System Image from SD or (2) Install System
Image from USB

2. Type in the system image file name. The system will start the installation process.

--
Model: UC-3111-T-AP-LX
Boot Loader Version: 1.5.0S03 CPU TYPE: 1GHz
Build date: Apr 26 2022 - 11:53:22 Serial Number: IMOXA1234567
LAN1 MAC: 00:90:e8:00:00:41 LAN2 MAC: 00:90:e8:00:00:42
--
(0) Update Firmware from TFTP (1) Update Firmware from SD
(2) Update Firmware from USB (3) TFTP Settings
--
Command>> Command>>2

System Image File Name (system image.img): IMG_UC-3100 v2.0.img

3. After the system image installation process is complete, unplug the power and reboot the system.

4. After rebooting the system, you can use the following command to check if the system image is up to
date.

moxa@moxa-tbzkb1090923:# sudo mx-ver
UC-3111-T-AP-LX version 2.0

 NOTE
 Update firmware from USB and SD may not be available in older version of bootloader.

 ATTENTION
 In the case of the UC-8410A Series, the system may fail to boot from an SD card if a USB storage device

is also plugged in. Please remove any plugged-in USB storage devices before booting from an SD card.

Configuring Advanced Bootup Settings

Enabling/Disabling Admin Password
By default, the bootloader menu is not protected by password. To enhance the security of your Moxa Arm-
based computer, we strongly recommended you to setup an administrator password if there is a threat of
unauthorized physical access. To setup an administrator password, do the following:

1. Select (2) Advance Setting > (0) Enable/Disable Admin Password

2. Select 1 to setup an administrator password.

If you select the option 2 (disable), the current password will be cleared.

3. Enter the new password twice.

Keep the following password strength requirement for the password.

 6 to 16 characters in length

 At least one number: 0 to 9

 At least one mixed set of upper and lower letters: A to Z, a to z

 At least one special character: ~!@#$%^&*-_|;:,.<>[]{}()

--
 Model: UC-3111-T-AP-LX
 Boot Loader Version: 1.5.0S03 CPU TYPE: 1GHz

mailto:%7E!@#$%25%5E&*-_|;:,.%3C%3E%5B%5D%7B%7D()

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 21

 Build date: Apr 26 2022 - 11:53:22 Serial Number: IMOXA1234567
 LAN1 MAC: 00:90:e8:00:00:41 LAN2 MAC: 00:90:e8:00:00:42
--
 (0) Enable/Disable Admin Password (1) Configure Admin Password
 (2) Clear TPM
--
Command>>0
Current Mode: Disabled

0 - Disable, 1 - Enable (0-1, Enter to abort): 1

The current password is empty, please set one.

Note: Password strength should be minimum length (6-16)
and with at least one number: 0 to 9,
mixed upper and lower letters: A to Z, a to z,
and at least one special character: ~!@#$%^&*-_|;:,.<>[]{}()

Enter new password: *************
Retype password: *************
Password set successfully

Password status : Enabled.

After the Administrator password is set, password authentication is required when accessing the
bootloader menu.

DRAM: 1 GiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1, OMAP SD/MMC: 2
Net: cpsw0, cpsw1
Non-security model.
Model: 0x02
2.0 TPM (device-id 0x15D1, rev-id 16)
TPM2 Init OK!
TPM2 Startup (1) OK!

Press To Enter BIOS configuration Setting

Please enter your password!
Enter current password: *************

 WARNING
 It is important to save the password in a secure location. If the password is lost and access to bootloader

menu is needed, you will have to contact Moxa technical support to send your Arm-based computer to
Moxa for a password reset.

Configuring the Admin Password
To change the Administrator password, select (2) Advance Setting > (1) Configure Admin Password
and follow the on-screen instructions.

Clearing the TPM Module
Clearing the TPM will erase all information stored on the module. You will lose all created keys and
access to data encrypted by these keys.

To clear the TPM, select (2) Advance Setting > (2) Clear TPM and follow the on-screen instructions.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 22

Shutting Down the Device

To shut down the device, disconnect the power source to the computer. When the computer is powered off,
main components such as the CPU, RAM, and storage devices are powered off, although an internal clock
may retain battery power.

You can use the shutdown command to close all software running on the device and halt the system.
However, main components such as the CPU, RAM, and storage devices will continue to be powered after
you run this command.

moxa@Moxa:~$ sudo shutdown -h now

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 23

3. Advanced Configuration of Peripherals

In this chapter, we include more information on the Arm-based computer’s peripherals, such as the serial
interface, storage, diagnostic LEDs, and the cellular module. The instructions in this chapter cover all
functions supported in Moxa’s Arm-based computers. Before referring to the sections in this chapter, make
sure that they are applicable to and are supported by the hardware specification of your Arm-based
computer.

Serial Ports
The serial ports support RS-232, RS-422, and RS-485 2-wire operation modes with flexible baudrate
settings. The default operation mode is RS-232; use the mx-uart-ctl command to change the operation
mode.

Usage: mx-uart-ctl -p <#port_number> -m <#uart_mode>
Port number: n = 0,1,2,...
uart mode: As in the following table

Interface-No. Operation Mode
None Display current setting
0 RS-232
1 RS-485 2-wire
2 RS-422 / RS-485 4-wire

For example, to set Port 0 to the RS-485 4-wire mode, use the following command:

root@Moxa:/home/moxa# mx-uart-ctl -p 0
Current uart mode is RS232 interface.
root@Moxa:/home/moxa# mx-uart-ctl -p 0 -m 2
Set OK.
Current uart mode is RS422/RS485-4W interface.

Changing the Serial Terminal Settings
The stty command is used to view and modify the serial terminal settings. The details are given below.

Displaying All Settings
Use the following command to display all serial terminal settings.

moxa@Moxa:~$ sudo stty -a -F /dev/ttyM0
speed 9600 baud; rows 0; columns 0; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 24

Configuring Serial Settings
The following example changes the baudrate to 115200.

moxa@Moxa:~$ sudo stty 115200 -F /dev/ttyM0

Check the settings to confirm that the baudrate has changed to 115200.

moxa@Moxa:~$ sudo stty -a -F /dev/ttyM0
speed 115200 baud; rows 0; columns 0; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; swtch = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread clocal -crtscts
-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff
-iuclc -ixany -imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt
echoctl echoke

 NOTE
 Detailed information on the stty utility is available at the following link:

http://www.gnu.org/software/coreutils/manual/coreutils.html

USB and SD Ports
The Arm-based computers are provided with a USB port for storage expansion.

Automounting USB and SD Drives

The Arm-based computers support hot plug function for connecting USB and SD mass storage devices.
However, the automount service is disabled by default for better security practice.

Use the moxa-auto-mountd.service command to enable automounting:

Command Description
systemctl enable moxa-auto-
mountd.service Start the automount service at each boot.

systemctl disable moxa-auto-
mountd.service

Disable the automount service so it doesn’t start at
each boot

systemctl start moxa-auto-
mountd.service

Start the automount service immediately for the
current session.

systemctl stop moxa-auto-
mountd.service

Stop the automount service immediately for the
current session.

 NOTE
 The older imager version may not have automount service preloaded. You can use apt-get install

moxa-auto-mountd command to install the package.

Use the mount command to view details about all partitions.

moxa@Moxa:~$ mount | grep media

http://www.gnu.org/software/coreutils/manual/coreutils.html

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 25

 ATTENTION
 Remember to type the sync command before you disconnect the USB mass storage device to prevent loss

of data.

 Exit from the /media/* directory when you disconnect the storage device. If you stay in /media/[the
mounted device folder], the auto unmount process will fail. If that happens, type #umount /media/[the
mounted device folder], to unmount the device manually.

CAN Bus Interface
The CAN ports on Moxa’s Arm-based computers support CAN 2.0A/B standard.

Configuring the Socket CAN Interface
The CAN ports are initialized by default. If any additional configuration is needed, use the ip link
command to check the CAN device.

To check the CAN device status, use the ip link command.

ip link
can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UNKNOWN mode
DEFAULT group default qlen 10 link/can

To configure the CAN device, use # ip link set can0 down to turn off the device first

ip link set can0 down
ip link
can0: <NOARP,ECHO> mtu 16 qdisc pfifo_fast state DOWN mode DEFAULT group
default qlen 10 link/can

Here’s an example with bitrate 12500:

ip link set can0 up type can bitrate 12500

CAN Bus Programming Guide

The following code is an example of the SocketCAN API, which sends packets using the raw interface.

CAN Write
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <net/if.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/can.h>
#include <linux/can/raw.h>
int main(void)
{
 int s;
 int nbytes;
 struct sockaddr_can addr;
 struct can_frame frame;
 struct ifreq ifr;
 char *ifname = "can1";
 if((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {
 perror("Error while opening socket");

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 26

 return -1;
 }
 strcpy(ifr.ifr_name, ifname);
 ioctl(s, SIOCGIFINDEX, &ifr);
 addr.can_family = AF_CAN;
 addr.can_ifindex = ifr.ifr_ifindex;
 printf("%s at index %d\n", ifname, ifr.ifr_ifindex);
 if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
 perror("Error in socket bind");
 return -2;
 }
 frame.can_id = 0x123;
 frame.can_dlc = 2;
 frame.data[0] = 0x11;
 frame.data[1] = 0x22;
 nbytes = write(s, &frame, sizeof(struct can_frame));
 printf("Wrote %d bytes\n", nbytes);
 return 0;
}

CAN Read
The following sample code illustrates how to read the data.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <net/if.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <linux/can.h>
#include <linux/can/raw.h>
Int main(void)
{
 int i;
 int s;
 int nbytes;
 struct sockaddr_can addr;
 struct can_frame frame;
 struct ifreq ifr;
 char *ifname = "can0";
 if((s = socket(PF_CAN, SOCK_RAW, CAN_RAW)) < 0) {
 perror("Error while opening socket");
 return -1;
 }
 strcpy(ifr.ifr_name, ifname);
 ioctl(s, SIOCGIFINDEX, &ifr);
 addr.can_family = AF_CAN;
 addr.can_ifindex = ifr.ifr_ifindex;
 printf("%s at index %d\n", ifname, ifr.ifr_ifindex);
 if(bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
 perror("Error in socket bind");
 return -2;
 }
 nbytes = read(s, &frame, sizeof(struct can_frame));
 if (nbytes < 0) {
 perror("Error in can raw socket read");
 return 1;
 }
 if (nbytes < sizeof(struct can_frame)) {
 fprintf(stderr, "read: incomplete CAN frame\n");

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 27

 return 1;
 }
 printf(" %5s %03x [%d] ", ifname, frame.can_id, frame.can_dlc);
 for (i = 0; i < frame.can_dlc; i++)
 printf(" %02x", frame.data[i]);
 printf("\n");
 return 0;
}

After you use the SocketCAN API, the SocketCAN information is written to the paths:
/proc/sys/net/ipv4/conf/can* and /proc/sys/net/ipv4/neigh/can*

Configuring the Real COM Mode

 IMPORTANT
 The UC-8100, UC-8100-ME-T, and UC-8100A-ME-T Series do not support Real COM mode.

You can use Moxa’s NPort series serial device drivers to extend the number of serial interfaces (ports) on
your Arm-based Moxa computer. The NPort comes equipped with COM drivers that work with Windows
systems and TTY drivers for Linux systems. The driver establishes a transparent connection between the
host and serial device by mapping the IP Port of the NPort’s serial port to a local COM/TTY port on the host
computer.

Real COM Mode also supports up to 4 simultaneous connections, so that multiple hosts can collect data from
the same serial device at the same time.

One of the major conveniences of using Real COM Mode is that Real COM Mode allows users to continue
using RS-232/422/485 serial communications software that was written for pure serial communications
applications. The driver intercepts data sent to the host’s COM port, packs it into a TCP/IP packet, and then
redirects it through the host’s Ethernet card. At the other end of the connection, the NPort accepts the
Ethernet frame, unpacks the TCP/IP packet, and then sends it transparently to the appropriate serial device
attached to one of the NPort’s serial ports.

The Real COM driver is installed on the Arm-based computer by default. You will be able to view the driver
related files in the /usr/lib/npreal2/driver folder.

> mxaddsvr (Add Server, mapping tty port) > mxdelsvr (Delete Server, unmapping
tty port)

> mxloadsvr (Reload Server) > mxmknod (Create device node/tty port)

> mxrmnod (Remove device node/tty port)

> mxuninst (Remove tty port and driver files)

At this point, you will be ready to map the NPort serial port to the system tty port. For a list of supported
NPort devices and their revision history, click https://www.moxa.com/en/support/search?psid=50278.

Mapping TTY Ports

Make sure that you set the operation mode of the desired NPort serial port to Real COM mode. After logging
in as a super user, enter the directory /usr/lib/npreal2/driver and then execute mxaddsvr to map the target
NPort serial port to the host tty ports. The syntax of mxaddsvr command is as follows:

mxaddsvr [NPort IP Address] [Total Ports] ([Data port] [Cmd port])

The mxaddsvr command performs the following actions:

1. Modifies the npreal2d.cf.

2. Creates tty ports in the /dev directory with major & minor number configured in npreal2d.cf.

3. Restarts the driver.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 28

Mapping TTY Ports (automatic)
To map tty ports automatically, execute the mxaddsvr command with just the IP address and the number
of ports, as shown in the following example:

cd /usr/lib/npreal2/driver
./mxaddsvr 192.168.3.4 16

In this example, 16 tty ports will be added, all with IP 192.168.3.4 consisting of data ports from 950 to 965
and command ports from 966 to 981.

 ATTENTION
 You must reboot the system after mapping tty ports with mxaddsvr

Mapping TTY Ports (manual)
To map tty ports manually, execute the mxaddsvr command and specify the data and command ports as
shown in the following example:

cd /usr/lib/npreal2/driver
./mxaddsvr 192.168.3.4 16 4001 966

In this example, 16 tty ports will be added, all with IP 192.168.3.4, with data ports from 4001 to 4016 and
command ports from 966 to 981.

 ATTENTION
 You must reboot the system after mapping tty ports with mxaddsvr

Removing Mapped TTY Ports
After logging in as root, enter the directory /usr/lib/npreal2/driver and then execute the mxdelsvr
command to delete a server. The syntax of mxdelsvr is:

mxdelsvr [IP Address]

Example:

cd /usr/lib/npreal2/driver
./mxdelsvr 192.168.3.4

The following actions are performed when the mxdelsvr command is executed:

1. Modify npreal2d.cf.

2. Remove the relevant tty ports from the /dev directory.

3. Restart the driver.

If the IP address is not provided in the command line, the program will list the installed servers and total
ports on the screen. You will need to choose a server from the list for deletion.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 29

4. Configuring Wireless Connectivity

The instructions in this chapter cover all wireless functions supported in Moxa’s Arm-based computers.
Before referring to the sections in this chapter, make sure that they are applicable to and are supported by
the hardware specification of your Arm-based computer platform.

Configuring the Cellular Connection

Using Cell_mgmt
The cell_mgmt utility is used to manage the cellular module in the computer. To run the cell_mgmt
command, you must use sudo or run the command with root permission. The utility does not support SMS
and MMS communication.

Manual Page
NAME
 cell_mgmt

USAGE
 cell_mgmt [-i <module id>] [options]

OPTIONS
 -i <module id>
 Module identifier, start from 0 and default to 0.
 -s <slot id>
 Slot identifier, start from 1 and default value depends
 on module interface.
 example: module 0 may in slot 2
 modules
 Shows module numbers supported.
 slot
 Shows module slot id
 interface [interface id]
 Switching and checking module interface(s)
 start [OPTIONS]
 Start network.

 OPTIONS:
 PIN - PIN code
 Phone - Phone number (especially for AT based modules)
 Auth - Authentication type(CHAP|PAP|BOTH), default=NONE.
 Username
 Password

 example:
 cell_mgmt start
 cell_mgmt start PIN=0000
 cell_mgmt start PIN=0000 Phone=*99#
 cell_mgmt start PIN=0000 Phone=*99# \
 Auth=BOTH Username=moxa Password=moxamoxa
 stop
 network.
 power_on
 Power ON.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 30

 power_off
 Power OFF.
 power_cycle
 Power cycle the module slot.
 switch_sim <1|2>
 Switch SIM slot.
 gps_on
 GPS ON.
 gps_off
 GPS OFF.
 attach_status
 Query network registration status.
 status
 Query network connection status.
 signal
 Get signal strength.
 at <'AT_COMMAND'>
 Input AT Command.
 Must use SINGLE QUOTATION to enclose AT Command.
 sim_status
 Query sim card status.
 unlock_pin <PIN>
 Unlock PIN code and save to configuration file.
 pin_retries
 Get PIN code retry remain times.
 pin_protection <enable|disable> <current PIN>
 Set PIN protection in the UIM.
 set_flight_mode <0|1>
 Set module into flight mode (1) or online mode (0).
 set_apn <APN>
 Set APN to configuration file.
 check_carrier
 Check current carrier.
 switch_carrier <Verizon|ATT|Sprint|Generic>
 Switching between US carrier frequency bands.
 m_info
 Module/SIM information.
 module_info
 Module information.
 module_ids
 Get device IDs (ex: IMEI and/or ESN).
 iccid
 Get SIM card ID
 imsi
 Get IMSI (International Mobile Subscriber Identity).
 location_info
 Get cell location information.
 operator
 Telecommunication operator.
 vzwauto
 Verizon Private Network auto dialup.
 version
 Cellular management version.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 31

Dial-up Process

Before dialing, ensure that the APN (Access Point Name) is set correctly and the cellular module has attach
with the base station.

1. Unlock the PIN code (if the SIM is locked using a PIN code).
Use the cell_mgmt sim_status command to check the SIM card status and the cell_mgmt
unlock_pin <PIN> command to unlock the SIM card if a SIM PIN is set.

moxa@Moxa:/home/moxa$ sudo cell_mgmt sim_status
+CPIN: READY

2. Use the cell_mgmt set_apn <APN> command to set the name of the access point that will be used
to connect to the carrier.

moxa@Moxa:/home/moxa$ sudo cell_mgmt set_apn internet
old APN=test, new APN=internet

3. Check if the service attaches with the correct APN.

moxa@Moxa:/home/moxa$ sudo cell_mgmt attach_status
CS: attached
PS: attached

PS (packet-switched) should be attached to establish a network connection.
4. Dial up using the cell_mgmt start command.

moxa@Moxa:/home/moxa$ sudo cell_mgmt start
PIN code: Disabled or verified
Starting network with '_qmicli --wds-start-network=apn=internet,ip-type=4 --
client-no-release-cid --device-open-net=net-802-3|net-no-qos-header'...
Saving state... (CID: 8)
Saving state... (PDH: 1205935456)
Network started successfully

The dial-up function in the cell_mgmt utility will automatically set the DNS and default gateway of the
computer, if they have not been set.

Dial-up Commands

cell_mgmt start
To start a network connection, use the default cellular module of the computer (If the computer supports
multiple modules, use the cell_mgmt interface command to verify the default module that is selected).

If you run the cell_mgmt start command with the Username, Password, and PIN, all the configurations
will be written into the configuration file /etc/moxa-cellular-utils/moxa-cellular-utils.conf.

This information is then used when you run the command without specifying the options.

Usage: cell_mgmt start Username=[user] Password=[pass] PIN=[pin_code]

cell_mgmt stop
Stops/disables the network connection on the cellular module of the computer

moxa@Moxa:/home/moxa$ sudo cell_mgmt stop
Killed old client process
Stopping network with '_qmicli --wds-stop-network=1205933264 --client-cid=8'...
Network stopped successfully
Clearing state...

cell_mgmt status
Provides information on the status of the network connection.

moxa@Moxa:/home/moxa$ sudo cell_mgmt status
Status: connected

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 32

cell_mgmt signal
Provides the cellular signal strength.

For moxa-cellular-utils version 2.0.0 and later, cellular signal strength is indicated using levels.

root@Moxa:/home/moxa$ sudo cell_mgmt signal
4G Level 4 (Good)

Level Description
5 Excellent
4 Good
3 Fair
2 Poor
1 Very Poor
0 No Signal

For moxa-cellular-utils versions prior to version 2.0.0, the cellular signal strength is measured using
Reference Signal Received Power (RSRP). The following table lists the signal strength for RSRP ranges.

moxa@Moxa:/home/moxa$ sudo cell_mgmt signal
umts -77 dbm

RSRP Signal Strength
<-115 dBm No signal
-105 to -115 dBm Poor
-95 to -105 dBm Fair
-85 to -95 dBm Good
>-85 dBm Excellent

cell_mgmt operator
Provides information on the cellular service provider.

moxa@Moxa:/home/moxa$ sudo cell_mgmt operator
Chunghwa

Cellular Module

cell_mgmt module_info
Provides information of the cellular module (AT port, GPS port, QMI port, and module name, etc.).

moxa@Moxa:/home/moxa$ sudo cell_mgmt module_info
SLOT: 1
Module: MC7354
WWAN_node: wwan0
AT_port: /dev/ttyUSB2
GPS_port: /dev/ttyUSB1
QMI_port: /dev/cdc-wdm0
Modem_port: NotSupport

cell_mgmt interface [id]
Used to view the supported modules and default module on the computer with their IDs. Change the default
module by specifying the ID.

moxa@Moxa:/home/moxa$ sudo cell_mgmt interface
[0] wwan0 <Current>

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 33

cell_mgmt power_cycle
Use the cell_mgmt power_cycle command to power cycle the cellular module in the computer. You may
see a kernel message that the module has been reloaded.

moxa@Moxa:/home/moxa$ sudo cell_mgmt power_cycle
Network already stopped
Clearing state...
[232733.202208] usb 1-1: USB disconnect, device number 2
[232733.217132] qcserial ttyUSB0: Qualcomm USB modem converter now disconnected
from ttyUSB0
[232733.225616] qcserial 1-1:1.0: device disconnected
[232733.256738] qcserial ttyUSB1: Qualcomm USB modem converter now disconnected
from ttyUSB1
[232733.265214] qcserial 1-1:1.2: device disconnected
[232733.281566] qcserial ttyUSB2: Qualcomm USB modem converter now disconnected
from ttyUSB2
[232733.290006] qcserial 1-1:1.3: device disconnected
[232733.313572] qmi_wwan 1-1:1.8 wwan0: unregister 'qmi_wwan' usb-musb-
hdrc.0.auto-1, WWAN/QMI device
[232746.879873] usb 1-1: new high-speed USB device number 3 using musb-hdrc
[232747.020358] usb 1-1: config 1 has an invalid interface number: 8 but max is
3
[232747.027639] usb 1-1: config 1 has no interface number 1
[232747.036212] usb 1-1: New USB device found, idVendor=1199, idProduct=68c0
[232747.043185] usb 1-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[232747.050473] usb 1-1: Product: MC7354
[232747.054151] usb 1-1: Manufacturer: Sierra Wireless, Incorporated
[232747.068022] qcserial 1-1:1.0: Qualcomm USB modem converter detected
[232747.079525] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB0
[232747.089754] qcserial 1-1:1.2: Qualcomm USB modem converter detected
[232747.099156] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB1
[232747.109317] qcserial 1-1:1.3: Qualcomm USB modem converter detected
[232747.118581] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB2
[232747.130890] qmi_wwan 1-1:1.8: cdc-wdm0: USB WDM device
[232747.137174] qmi_wwan 1-1:1.8 wwan0: register 'qmi_wwan' at usb-musb-
hdrc.0.auto-1, WWAN/QMI device, 0a:ba:e1:d6:ed:4a

cell_mgmt check_carrier
The cell_mgmt check_carrier command helps to check if the current carrier matches with the service
(SIM card) provider.

moxa@Moxa:/home/moxa$ sudo cell_mgmt check_carrier
----------Carrier Info----------
preferred firmware=05.05.58.01
preferred carrier name=ATT
preferred carrier config=ATT_005.026_000
firmware=05.05.58.01
carrier name=ATT
carrier config=ATT_005.026_000

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 34

cell_mgmt switch_carrier
Some modules provide multiple carrier support. Use the cell_mgmt switch_carrier command to
switch between carriers. It may take some time (depending on the module's mechanism) to switch between
carriers.

For the UC-2114 and UC-2116 computers, refer to the following table for a list of the cellular carriers
supported.

MNO Profile
(UC-2114 & UC-2116)

System Selection
(Primary/Secondary)

LTE Bands Supported UBANDMASK Support

Default M1/NB1
2, 3, 4, 5, 8, 12, 13, 18, 19,
20, and 25 (M1 only)

No

AT&T M1 only 2, 4, 5, and 12 No
China Telecom M1/NB1 3, 5, and 8 Yes
Deutsche Telekom M1/NB1 3, 8, and 20 Yes
Sprint M1 only 2, 4, 12, and 25 Yes

Standard Europe M1/NB1 3, 8, and 20 Yes

Telstra M1 only 3, 5, 8, and 28 No

T-Mobile USA NB1 only 2, 4, 5, and 12 Yes

TELUS M1 only 2, 4, 5, and 12 No

Verizon M1 only 13 No

Vodafone NB1/M1 3, 8, and 20 Yes

moxa@Moxa:/home/moxa$ sudo cell_mgmt switch_carrier

Usage:
 switch_carrier <Verizon|ATT|Sprint|Generic>
moxa@Moxa:/home/moxa$ sudo cell_mgmt switch_carrier Verizon
----------switch_carrier------------
cmd=AT!GOBIIMPREF="05.05.58.01","VZW","VZW_005.029_001"

OK

OK

wait for power cycle...
Network already stopped
Clearing state...
[236362.468977] usb 1-1: USB disconnect, device number 3
[236362.482562] qcserial ttyUSB0: Qualcomm USB modem converter now disconnected
from ttyUSB0
[236362.491019] qcserial 1-1:1.0: device disconnected
[236362.521065] qcserial ttyUSB1: Qualcomm USB modem converter now disconnected
from ttyUSB1
[236362.529430] qcserial 1-1:1.2: device disconnected
[236362.544653] qcserial ttyUSB2: Qualcomm USB modem converter now disconnected
from ttyUSB2
[236362.553133] qcserial 1-1:1.3: device disconnected
[236362.558283] qmi_wwan 1-1:1.8 wwan0: unregister 'qmi_wwan' usb-musb-
hdrc.0.auto-1, WWAN/QMI device
[236376.209868] usb 1-1: new high-speed USB device number 4 using musb-hdrc
[236376.350358] usb 1-1: config 1 has an invalid interface number: 8 but max is
3
[236376.357639] usb 1-1: config 1 has no interface number 1
[236376.364991] usb 1-1: New USB device found, idVendor=1199, idProduct=68c0
[236376.371925] usb 1-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[236376.379217] usb 1-1: Product: MC7354
[236376.382924] usb 1-1: Manufacturer: Sierra Wireless, Incorporated

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 35

[236376.400588] qcserial 1-1:1.0: Qualcomm USB modem converter detected
[236376.412010] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB0
[236376.422273] qcserial 1-1:1.2: Qualcomm USB modem converter detected
[236376.429958] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB1
[236376.441031] qcserial 1-1:1.3: Qualcomm USB modem converter detected
[236376.448337] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB2
[236376.461514] qmi_wwan 1-1:1.8: cdc-wdm0: USB WDM device
[236376.467762] qmi_wwan 1-1:1.8 wwan0: register 'qmi_wwan' at usb-musb-
hdrc.0.auto-1, WWAN/QMI device, 0a:ba:e1:d6:ed:4a
[236411.387228] usb 1-1: USB disconnect, device number 4
[236411.393963] qcserial ttyUSB0: Qualcomm USB modem converter now disconnected
from ttyUSB0
[236411.402361] qcserial 1-1:1.0: device disconnected
[236411.422719] qcserial ttyUSB1: Qualcomm USB modem converter now disconnected
[236411.431186] qcserial 1-1:1.2: device disconnected
[236411.446102] qcserial ttyUSB2: Qualcomm USB modem converter now disconnected
from ttyUSB2
[236411.454583] qcserial 1-1:1.3: device disconnected
[236411.459687] qmi_wwan 1-1:1.8 wwan0: unregister 'qmi_wwan' usb-musb-
hdrc.0.auto-1, WWAN/QMI device
[236423.109879] usb 1-1: new high-speed USB device number 5 using musb-hdrc
[236423.250364] usb 1-1: config 1 has an invalid interface number: 8 but max is
3
[236423.257649] usb 1-1: config 1 has no interface number 1
[236423.266064] usb 1-1: New USB device found, idVendor=1199, idProduct=68c0
[236423.273024] usb 1-1: New USB device strings: Mfr=1, Product=2,
SerialNumber=3
[236423.280331] usb 1-1: Product: MC7354
[236423.284011] usb 1-1: Manufacturer: Sierra Wireless, Incorporated
[236423.298320] qcserial 1-1:1.0: Qualcomm USB modem converter detected
[236423.310356] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB0
[236423.318614] qcserial 1-1:1.2: Qualcomm USB modem converter detected
[236423.328841] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB1
[236423.338942] qcserial 1-1:1.3: Qualcomm USB modem converter detected
[236423.348418] usb 1-1: Qualcomm USB modem converter now attached to ttyUSB2
[236423.360733] qmi_wwan 1-1:1.8: cdc-wdm0: USB WDM device
[236423.366960] qmi_wwan 1-1:1.8 wwan0: register 'qmi_wwan' at usb-musb-
hdrc.0.auto-1, WWAN/QMI device, 0a:ba:e1:d6:ed:4a
moxa@Moxa:/home/moxa$ sudo cell_mgmt check_carrier
----------Carrier Info----------
preferred firmware=05.05.58.01
preferred carrier name=VZW
preferred carrier config=VZW_005.029_001
firmware=05.05.58.01
carrier name=VZW
carrier config=VZW_005.029_001

cell_mgmt at AT_COMMAND
The AT command is used to provide inputs. For example, use the AT command, AT+CSQ as follows:

moxa@Moxa:/home/moxa$ sudo cell_mgmt at 'AT+CSQ'

+CSQ: 18,99

OK

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 36

Configuring a NB-IoT/Cat. M1 Connection (UC-2114 and UC-
2116 only)

You can change the RAT (radio access technology) type of the NB-IoT module in UC-2114 and UC-2116
using the following AT commands:

Switching to the Cat. M1 Mode
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+COPS=2'
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+URAT=7'
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+COPS=0'

Switching to the NB-IoT Mode
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+COPS=2'
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+URAT=8'
moxa@Moxa:/home/moxa$ cell_mgmt at 'AT+COPS=0'

 NOTE
• The APN name 'internet.iot' is set by the user. For information on the APN settings, contact your

mobile network operator.
• A PPP dial-up connection that uses Cat. M1 and CAT. NB1 may sometimes take a couple of minutes to

establish a connection if the signal is weak.
• Power saving mode (PSM) is not supported in the UC-2114 and UC-2116 computers.

You can also use an AT command to read the mode:

cell_mgmt at AT+URAT?

root@Moxa:/home/moxa# cell_mgmt at AT+URAT?

+URAT: 7,8

OK

7: CAT-M1
8: NB-IOT

GPS

UC-8112-ME-T-US-LTE Model

To view the GPS information for the UC-8112-ME-T-US-LTE model, do the following:

1. Power on the GPS module using the command:

root@Moxa:/home/moxa# cell_mgmt gps_on

2. Check the GPS port using the cell_mgmt command.
In the following example, the GPS port is at /dev/ttyUSB1.

root@Moxa:/home/moxa# cell_mgmt module_info
SLOT: 1
Module: MC7354
WWAN_node: wwan1
AT_port: /dev/ttyUSB2
GPS_port: /dev/ttyUSB1
QMI_port: /dev/cdc-wdm1
Modem_port: NotSupport
AT_port (reserved): NotSupport

3. Type the following command to get the GPS location information from the GPS port.

root@Moxa:/home/moxa# cat /dev/ttyUSB1

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 37

For Other Models

Use cell_mgmt module_info to get information of the cellular module including the GPS port information.

moxa@Moxa:/home/moxa$ sudo cell_mgmt module_info
SLOT: 1
Module: MC7354
WWAN_node: wwan0
AT_port: /dev/ttyUSB2
GPS_port: /dev/ttyUSB1
QMI_port: /dev/cdc-wdm0
Modem_port: NotSupport

Type the following command to get the GPS location information from the GPS port.

root@Moxa:/home/moxa# cat /dev/ttyUSB1

Configuring the Wi-Fi Connection
You can configure the Wi-Fi connection for your Arm-based computer using a configuration file or the
wifi_mgmt utility provided by Moxa. For advanced settings, you can use the wpa_supplicant command.

Configuring WPA2

Moxa’s Arm-based computers support WPA2 security using the /sbin/wpa_supplicant program. Refer to
the following table for the configuration options. The Key required before joining network? column
specifies whether an encryption and/or authentication key must be configured before associating with a
network.

Infrastructure
mode

Authentication
mode

Encryption
status

Manual Key
required?

IEEE 802.1X
enabled?

Key required
before joining
network?

ESS Open None No No No
ESS Open WEP Optional Optional Yes
ESS Shared None Yes No Yes
ESS Shared WEP Optional Optional Yes
ESS WPA WEP No Yes No
ESS WPA TKIP No Yes No
ESS WPA2 AES No Yes No
ESS WPA-PSK WEP Yes Yes No
ESS WPA-PSK TKIP Yes Yes No
ESS WPA2-PSK AES Yes Yes No

Using wifi_mgmt

Manual Page
The wifi_mgmt utility manages the behavior of the Wi-Fi module.

moxa@Moxa:~$ sudo wifi_mgmt help
[sudo] password for moxa:
Usage:
/usr/sbin/wifi_mgmt [-i <interface id>] [-s <slot id>] [OPTIONS]
OPTIONS
start Type=[type] SSID=[ssid] Password=[password]
Insert an AP information to the managed AP list and then connect to the AP.
[type] open/wep/wpa/wpa2
[ssid] access point's SSID
[password] access point's password
example:
wifi_mgmt start Type=wpa SSID=moxa_ap Password=moxa
wifi_mgmt start Type=open SSID=moxa_ap

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 38

start [num]
Connect to AP by the managed AP list number.
start
Connect to the last time AP that was used.
scan -d
Scan all the access points information and show the detail message.
scan
Scan all the access points information.
signal
Show the AP's signal.
list
Show the managed AP list.
insert Type=[type] SSID=[ssid] Password=[password]
Insert a new AP information to the managed AP list.
[type] open/wep/wpa/wpa2
[ssid] access point's SSID
[password] access point's password
example:
wifi_mgmt insert Type=wpa SSID=moxa_ap Password=moxa
select [num]
Select an AP num to connect which is in the managed AP list.
stop
Stop network.
status
Query network connection status.
interface [num]
Switch to another wlan[num] interface.
[num] interface number
example:
wifi_mgmt interface 0
interface
Get the current setting interface.
reconnect
Reconnect to the access point.
restart
Stop wpa_supplicant then start it again.
version
Wifi management version.

Connecting to an AP
You can connect your computer to an AP using the following three commands. The DNS and default gateway
will be configured automatically. If you want to use the wireless interface’s gateway, you must clean up
your computer’s default gateway configuration.

wifi_mgmt start Type=[type] SSID=[ssid] Password=[password]

Insert the AP information in the managed AP list and then connect to the AP.

root@Moxa:~# wifi_mgmt start Type=wpa SSID=moxa_ap Password=moxa
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

wifi_mgmt start [num]

Connect to the AP using the managed AP list number. If you have inserted the AP information before, the
information may still be in the managed AP list. Check the managed AP list using the wifi_mgmt list
command.

root@Moxa:~# wifi_mgmt list
network id / ssid / bssid / flags
0 MOXA_AP1 any [LAST USED]
1 MOXA_AP2 any [DISABLED]
2 MOXA_AP3 any [DISABLED]

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 39

Choose an AP number to start.

root@Moxa:~# wifi_mgmt start 1
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

wifi_mgmt start

Connect to the previous AP that was used.

root@Moxa:~# wifi_mgmt list
network id / ssid / bssid / flags
0 MOXA_AP1 any [LAST USED]
1 MOXA_AP2 any [DISABLED]
2 MOXA_AP3 any [DISABLED]

Use the wifi_mgmt command to connect to the AP “MOXA_AP1” that was used previously as follows:

root@Moxa:~# wifi_mgmt start
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

Stop or Restart a Network Connection

wifi_mgmt stop
root@Moxa:~# wifi_mgmt stop
Stopped.

wifi_mgmt restart
root@Moxa:~# wifi_mgmt restart
wpa_supplicant is closed!!
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

Inserting an AP or Choosing Another AP to Connect To
If you want to insert and AP use the wifi_mgmt insert command.

root@Moxa:~# wifi_mgmt insert Type=wpa2 SSID=MOXA_AP3 Password=moxa
root@Moxa:~# wifi_mgmt list
network id / ssid / bssid / flags
0 MOXA_AP1 any [CURRENT]
1 MOXA_AP2 any [DISABLED]
2 MOXA_AP3 any [DISABLED]

If you want to use another AP to connect, use the wifi_mgmt select command to switch to the AP.

root@Moxa:~# wifi_mgmt list
network id / ssid / bssid / flags
0 MOXA_AP1 any [DISABLED]
1 MOXA_AP2 any [CURRENT]
2 MOXA_AP3 any [DISABLED]
root@Moxa:~# wifi_mgmt select 2
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 40

Other Functions

wifi_mgmt scan

Scan all of the access point information.

root@Moxa:~# wifi_mgmt scan
bssid / frequency / signal level / flags / ssid
b0:b2:dc:dd:c9:e4 2462 -57 [WPA-PSK-TKIP][ESS] WES_AP
fc:f5:28:cb:8c:23 2412 -57 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fe:f0:28:cb:8c:23 2412 -59 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fc:f5:28:cb:39:08 2437 -79 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fe:f0:28:cb:39:08 2437 -81 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fc:f5:28:cb:5d:a8 2462 -83 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
2c:54:cf:fd:5a:cf 2437 -83 [WPA-PSK-TKIP][ESS] 5566fans
fe:f0:28:cb:5d:a8 2462 -87 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fe:f0:28:cb:5d:78 2462 -89 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fe:f0:28:cb:39:11 2437 -89 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fc:f5:28:cb:39:11 2437 -91 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fe:f0:28:cb:39:0b 2412 -91 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
02:1a:11:f1:dc:a1 2462 -91 [WPA2-PSK-CCMP][ESS] M9 Davidoff
fc:f5:28:cb:5d:78 2462 -93 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fe:f0:28:cb:5d:b7 2462 -93 [WPA2-EAP-CCMP-preauth][ESS] MHQ-Mobile
fc:f5:28:cb:39:0b 2412 -93 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fc:f5:28:cb:5d:b7 2462 -95 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB
fc:f5:28:cb:5d:93 2462 -97 [WPA2-EAP-CCMP-preauth][ESS] MHQ-NB

wifi_mgmt scan -d

Scan all of the access point information and show a detailed message.

root@Moxa:~# wifi_mgmt scan -d
wlan0 Scan completed :
Cell 01 - Address: FC:F5:28:CB:8C:23
Channel:1
Frequency:2.412 GHz (Channel 1)
Quality=51/70 Signal level=-59 dBm
Encryption key:on
ESSID:"MHQ-NB"
9 Mb/s; 12 Mb/s; 18 Mb/s
Mode:Master
Group Cipher : CCMP
Pairwise Ciphers (1) : CCMP
Authentication Suites (1) : 802.1x
Preauthentication Supported
Cell 02 - Address: FE:F0:28:CB:5D:A8
Channel:11
Frequency:2.462 GHz (Channel 11)
Quality=25/70 Signal level=-85 dBm
Encryption key:on
ESSID:"MHQ-Mobile"
9 Mb/s; 12 Mb/s; 18 Mb/s
Mode:Master
Group Cipher : CCMP
Pairwise Ciphers (1) : CCMP
Authentication Suites (1) : 802.1x
Preauthentication Supported
More..

wifi_mgmt signal

Show the AP’s signal.

root@Moxa:~# wifi_mgmt signal
level=-59 dBm

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 41

wifi_mgmt delete
root@Moxa:~# wifi_mgmt list
network id / ssid / bssid / flags
0 MOXA_AP1 any [CURRENT]
1 MOXA_AP1 any [DISABLED]
2 MOXA_AP3 any [DISABLED]
root@Moxa:~# wifi_mgmt delete 2
***** WARNING *****
Are you sure that you want to delete network id 2 (y/n)y
network id / ssid / bssid / flags
0 MOXA_AP1 any
1 MOXA_AP2 any [DISABLED]

wifi_mgmt status
root@Moxa:~# wifi_mgmt status
bssid=b0:b2:dc:dd:c9:e4
ssid=MOXA_AP1
id=0
mode=station
pairwise_cipher=TKIP
group_cipher=TKIP
key_mgmt=WPA-PSK
wpa_state=COMPLETED
ip_address=192.168.1.36
address=00:0e:8e:4c:13:5e

wifi_mgmt interface [num]

If there is more than one Wi-Fi interface, you can change the interface.

root@Moxa:~# wifi_mgmt interface
There is(are) 2 interface(s):
wlan0 [Current]
wlan1
root@Moxa:~# wifi_mgmt interface 1
Now is setting the interface as wlan1.

wifi_mgmt reconnect
root@Moxa:~# wifi_mgmt reconnect
wpa_state=SCANNING
wpa_state=SCANNING
wpa_state=COMPLETED
*** Get DHCP IP address from AP ***
*** Get DHCP IP from AP! ***

wifi_mgmt version
root@Moxa:~# wifi_mgmt version
wifi_mgmt version 1.0 Build 15050223

Configuring the Wireless LAN Using the Configuration File
You can edit the /etc/wpa_supplicant/wpa_supplicant.conf file to configure a Wi-Fi connection. The
following is an example of the configuration file for an OPEN/WEP/WPA/WPA2 access point.

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=wheel
update_config=1
Open system ###
#network={
ssid="Open"
key_mgmt=NONE
#}
###################
WEP #####

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 42

#network={
ssid="WEP-ssid"
bssid=XX:XX:XX:XX:XX:XX
key_mgmt=NONE
wep_key0=KEY
#}
###############
WPA/WPA2 PSK #####
#network={
ssid="WPA-ssid"
proto=WPA WPA2 RSN
key_mgmt=WPA-PSK
pairwise=TKIP CCMP
group=TKIP CCMP
psk="KEY"
#}
#######################

The basic command to connect to a WPA-supplicant is:

root@Moxa:~# wpa_supplicant -i <interface> -c <configuration file> -B

The -B option should be included because it forces the supplicant to run in the background.

1. Connect with the following command after editing the wpa_supplicant.conf file:

root@Moxa:~# wpa_supplicant -i wlan0 -c
/etc/wpa_supplicant/wpa_supplicant.conf –B

2. Use the #sudo apt-get install wireless-tools command to install the Wi-Fi utility.

You can use the iwconfig command to check the connection status. The response you receive should
be similar to the following:

wlan0 IEEE 802.11abgn ESSID:"MOXA_AP"
Mode:Managed Frequency:2.462 GHz Access Point: 00:1F:1F:8C:0F:64
Bit Rate=36 Mb/s Tx-Power=27 dBm
Retry min limit:7 RTS thr:off Fragment thr:off
Encryption key:1234-5678-90 Security mode:open
Power Management:off
Link Quality=37/70 Signal level=-73 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0

 WARNING
 Moxa strongly advises against using the WEP and WPA encryption standards. Both are now

officially deprecated by the Wi-Fi Alliance, and are considered insecure. To guarantee good Wi-Fi
encryption and security, use WPA2 with the AES encryption algorithm.

Configuring the Bluetooth Connection
Bluetooth connectivity is supported in the following computer models.

Computer Model Bluetooth Version Accessory Required
UC-3111-T-US-LX v.2.0.0 4.2 None. Bluetooth module is built-in
UC-3121-T-US-LX v.2.0.0 4.2 None. Bluetooth module is built-in

To be able to send data via Bluetooth between devices, you must first "pair" and "connect" the devices.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 43

In Bluetooth terminology, "pairing" is the process of making two devices known to each other. Pairing
remote devices can be done in two ways because the process can be initiated from either device. In the
following sections, we provide examples on how to pair and connect devices for Bluetooth.

 NOTE
 All tools used in the following example can be found in the bluez package available on the computer. Use

the #sudo apt-get install wireless-tools command to install the Wi-Fi utility. You can install
the bluez package using the command # apt-get install bluez.

Paring Devices

In this example, we describe how to pair two UC-3111-T-US-LX devices (Device A and Device B) for
Bluetooth connectivity.

Step 1:
Run the bluetoothctl command on both Device A and Device B.

Device A

root@Moxa:/home/moxa# bluetoothctl
[NEW] Controller 0C:1C:57:B7:B7:7B Moxa [default]
[bluetooth]#

Device B

root@Moxa:/home/moxa# bluetoothctl
[NEW] Controller C8:DF:84:4A:67:3F Moxa [default]
[bluetooth]#

We can see from the console output that the MAC address of Device A is 0C:1C:57:B7:B7:7B and the MAC
address of Device B is C8:DF:84:4A:67:3F.

Step 2:
Set Device A to discoverable and initiate scanning on Device B to find Device A.

 NOTE
• You can use the system-alias command to assign a name to a device so it can be identified easily

when it is discovered by other device.
• You can set the discoverable status to off or scan status to off at any time.

Device A

[bluetooth]# system-alias Device A
Changing Device A succeeded
[CHG] Controller 0C:1C:57:B7:B7:7B Alias: Device A
[bluetooth]# discoverable on
Changing discoverable on succeeded
[CHG] Controller 0C:1C:57:B7:B7:7B Discoverable: yes

Device B

[bluetooth]# system-alias Device B
Changing Device B succeeded
[CHG] Controller C8:DF:84:4A:67:3F Alias: Device B
[bluetooth]# scan on
Discovery started
[CHG] Controller C8:DF:84:4A:67:3F Discovering: yes
[NEW] Device 0C:1C:57:B7:B7:7B Device A

Device A is discovered by Device B.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 44

Step 3:
Use the pair command to pair the two devices.

Device A

[NEW] Device C8:DF:84:4A:67:3F Device B
[CHG] Device C8:DF:84:4A:67:3F Modalias: usb:v1D6Bp0246d052B
[CHG] Device C8:DF:84:4A:67:3F UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device C8:DF:84:4A:67:3F UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CHG] Device C8:DF:84:4A:67:3F UUIDs: 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device C8:DF:84:4A:67:3F UUIDs: 00001800-0000-1000-8000-00805f9b34fb
[CHG] Device C8:DF:84:4A:67:3F UUIDs: 00001801-0000-1000-8000-00805f9b34fb
[CHG] Device C8:DF:84:4A:67:3F ServicesResolved: yes
[CHG] Device C8:DF:84:4A:67:3F Paired: yes
[CHG] Device C8:DF:84:4A:67:3F ServicesResolved: no
[CHG] Device C8:DF:84:4A:67:3F Connected: no
[bluetooth]# quit
[DEL] Controller 0C:1C:57:B7:B7:7B Device A [default]

Device B

[bluetooth]# pair 0C:1C:57:B7:B7:7B
Attempting to pair with 0C:1C:57:B7:B7:7B
[CHG] Device 0C:1C:57:B7:B7:7B Connected: yes
[CHG] Device 0C:1C:57:B7:B7:7B UUIDs: 0000110c-0000-1000-8000-00805f9b34fb
[CHG] Device 0C:1C:57:B7:B7:7B UUIDs: 0000110e-0000-1000-8000-00805f9b34fb
[CHG] Device 0C:1C:57:B7:B7:7B UUIDs: 00001200-0000-1000-8000-00805f9b34fb
[CHG] Device 0C:1C:57:B7:B7:7B UUIDs: 00001800-0000-1000-8000-00805f9b34fb
[CHG] Device 0C:1C:57:B7:B7:7B UUIDs: 00001801-0000-1000-8000-00805f9b34fb
[CHG] Device 0C:1C:57:B7:B7:7B ServicesResolved: yes
[CHG] Device 0C:1C:57:B7:B7:7B Paired: yes
Pairing successful
[CHG] Device 0C:1C:57:B7:B7:7B ServicesResolved: no
[CHG] Device 0C:1C:57:B7:B7:7B Connected: no
[bluetooth]# quit
[DEL] Controller C8:DF:84:4A:67:3F Device B [default]

After the two devices are paired successfully, use the quit command to exit the bluetoothctl program.

Connecting Devices

After the two devices are paired, the next step is to connect them for Bluetooth.

Step 1:
Use the hciconfig command to check device names.

Device A

root@Moxa:/home/moxa# hciconfig
hci0: Type: Primary Bus: UART
BD Address: 0C:1C:57:B7:B7:7B ACL MTU: 1021:6 SCO MTU: 180:4
UP RUNNING PSCAN
RX bytes:2166 acl:16 sco:0 events:91 errors:0
TX bytes:3781 acl:16 sco:0 commands:61 errors:0

Device B

root@Moxa:/home/moxa# hciconfig
hci0: Type: Primary Bus: UART
BD Address: C8:DF:84:4A:67:3F ACL MTU: 1021:6 SCO MTU: 180:4
UP RUNNING PSCAN
RX bytes:8521 acl:16 sco:0 events:509 errors:0
TX bytes:6186 acl:16 sco:0 commands:350 errors:0

The Bluetooth device name for both Device A and Device is hci0.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 45

Step 2:
Connect the two devices using the rfcomm tool.

1. Set Device A to "listen state" so that Device B can connect.

2. From Device B, connect to the MAC address of Device A.

Device A

root@Moxa:/home/moxa# rfcomm -i hci0 listen /dev/rfcomm0
Waiting for connection on channel 1
Connection from C8:DF:84:4A:67:3F to /dev/rfcomm0
Press CTRL-C for hangup

Device B

root@Moxa:/home/moxa# rfcomm -i hci0 connect /dev/rfcomm0 0C:1C:57:B7:B7:7B
Connected /dev/rfcomm0 to 0C:1C:57:B7:B7:7B on channel 1
Press CTRL-C for hangup

The devices can now communicate over the /dev/rfcomm0 interface.

Step 3:
Test the connection between the devices over the /dev/rfcomm0 interface.

Device A

root@Moxa:/home/moxa# echo "123" > /dev/rfcomm0

Device B

root@Moxa:/home/moxa# cat /dev/rfcomm0
123

Additional References

• BlueZ

• bluetoothctl man page

• rfcomm man page

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 46

5. Security

Moxa’s Arm-based computers offer better security by introducing Moxa’s innovative secure boot feature,
and the integration of a Trusted Platform Module gives the user more solid protection for the platform.

Sudo Mechanism
In Moxa Arm-based computers, the root account is disabled in favor of better security. Sudo is a program
designed to let system administrators allow permitted users to execute some commands as the root user or
another user. The basic philosophy is to give as few privileges as possible but still allow people to get their
work done. Using sudo is better (safer) than opening a session as root for a number of reasons, including:

• Nobody needs to know the root password (sudo prompts for the current user's password). Extra
privileges can be granted to individual users temporarily, and then taken away without the need for a
password change.

• It is easy to run only the commands that require special privileges via sudo; the rest of the time, you
work as an unprivileged user, which reduces the damage caused by mistakes.

• Some system-level commands are not available to the user moxa directly, as shown in the sample
output below:

moxa@Moxa:~$ /sbin/hwclock
hwclock: Cannot access the Hardware Clock via any known method.
hwclock: Use the --debug option to see the details of our search for an
access method.

moxa@Moxa:/etc$ sudo /sbin/hwclock
2022-10-15 16:28:35.332239+0000

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 47

6. System Boot Up, Recovery, and Update

Set-to-default Function
Press and hold the reset button between 7 to 9 seconds to reset the computer to the factory default
settings. When the reset button is held down, the LED will blink once every second. The LED will become
steady when you hold the button continuously for 7 to 9 seconds. Release the button immediately when the
LED becomes steady to start loading the factory default settings. For additional details on the LEDs, refer to
the quick installation guide or the user’s manual for your Arm-based computer.

 ATTENTION
 Reset-to-default will erase all the data stored on the boot storage

 Please back up your files before resetting the system to factory defaults. All the data stored in the Arm-
based computer’s boot storage will be destroyed after resetting to factory defaults.

You can also use the mx-set-def command to restore the computer to factory default:

moxa@Moxa:~$ sudo mx-set-def

Firmware Update via APT
To update the firmware packages, follow the instructions at:

Keeping IIoT Gateway Software Up-to-date and Free of Vulnerabilities

Creating a Customized Firmware Image
To create a customized firmware image for your computer, follow the instructions at:

https://github.com/Moxa-Linux/resize-image

https://github.com/Moxa-Linux/resize-image

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 48

7. Programmer's Guide

Building an Application

Introduction

Moxa’s Arm-based computers support both native and cross-compiling of code. Native compiling is more
straightforward since all the coding and compiling can be done directly on the device. However, Arm
architecture is less powerful and hence the compiling speed is slower. To overcome this, you can cross
compile your code on a Linux machine using a toolchain; the compiling speed is much faster.

Native Compilation

Follow these steps to update the package menu:

1. Make sure a network connection is available.
2. Use the apt-get update command to update the Debian package list.

moxa@Moxa:~$ sudo apt-get update

3. Install the native compiler and necessary packages.

moxa@Moxa:~$ sudo apt-get install gcc build-essential flex bison automake

Cross Compilation

Moxa Industrial Linux (MIL) in Moxa’s Arm-based computers is based on Debian. So, we recommend setting
up a Debian environment on the host device to ensure best compatibility during cross compilation.

The toolchain will need about 300 MB of hard disk space on your PC.

To cross compile your code, do the following:

1. Set up a Debian 9 environment using a VM or Docker.

2. Add the Moxa Debian repository to the apt source list.

Open moxa.source.list in the vi editor.

user@Linux:~$ sudo vi /etc/apt/sources.list.d/moxa.sources.list

Add the following line to moxa.source.list:
deb http://debian.moxa.com/debian stretch main contrib non-free

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 49

3. Update the apt information.

user@Linux:~$ apt-get update

4. (Optional) During the update process, if you don't want to see messages related to "server certificate
verification failed", you can install Moxa apt keyring. These messages, however, will not affect the
operation.

user@Linux:~$ apt-get install moxa-archive-keyring

5. In order to install non-amd64 packages, such as armhf and u386, add the external architecture.
In the example, we are adding the armhf architecture.

user@Linux:~$ dpkg --add-architecture armhf

6. Update the apt information again.

user@Linux:~$ apt-get update

7. Download the toolchain file from apt server (all Moxa UC series computers use the official Debian
toolchain).

user@Linux:~$ apt-get install crossbuild-essential-armhf

8. Install dev or lib packages depending on whether Debian or Moxa packages are applicable for the
procedure.

Example for installing a Moxa package:

user@Linux:~$ apt-get install libmoxa-uart-control-dev:armhf

Example for installing a Debian official package:

user@Linux:~$ apt-get install libssl-dev:armhf

You can now start compiling programs using the toolchain.

 NOTE
 For all available libraries and headers offered by Debian, visit: https://packages.debian.org/index

Example Program—hello

In this section, we use the standard "hello" example program to illustrate how to develop a program for
Moxa computers. All example codes can be downloaded from Moxa’s website. The "hello" example code is
available in the hello folder; hello/hello.c:

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello World\n");
 return 0;
}

Native Compilation
1. Compile the hello.c code.

moxa@Moxa:~$ gcc -o hello hello.c
moxa@Moxa:~$ strip -s hello

or
use Makefile as follows:

moxa@Moxa:~$ make

2. Run the program.

moxa@Moxa:~$./hello
Hello World

https://packages.debian.org/index

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 50

Cross Compiling
1. Compile the hello.c code.

user@Linux:~$ arm-linux-gnueabihf-gcc -o hello \
 hello.c
user@Linux:~$ arm-linux-gnueabihf-strip -s hello

or
use Makefile as follows:

user@Linux:~$ make CC=arm-linux-gnueabihf-gcc \
 STRIP=arm-linux-gnueabihf-strip

2. Copy the program to a Moxa computer:

For example, if the IP address of your device used for cross compiling the code is "192.168.3.100" and
the IP address of the Moxa computer is "192.168.3.127", use the following command:

user@Linux:~$ scp hello moxa@192.168.3.127:~

3. Run the hello.c program on the Moxa computer.

moxa@Moxa:~$./hello
Hello World

Makefile Example

You can create a Makefile for the “hello" example program using the following code. By default, the Makefile
is set for native compiling.

"hello/Makefile":

CC:=gcc
STRIP:=strip

all:
 $(CC) -o hello hello.c
 $(STRIP) -s hello

.PHONY: clean
clean:
 rm -f hello

To set the hello.c program for cross compilation, modify the toolchain settings as follows:

CC:=arm-linux-gnueabihf-gcc
STRIP:=arm-linux-gnueabihf-strip

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 51

Standard APIs
This section shows how to use some standard APIs on Moxa computers.

Cryptodev

The purpose of cryptographic hardware accelerator is to load off the intensive encryption/decryption and
compression/decompression tasks from CPU.

Cryptodev-linux is a device that allows access to Linux kernel cryptographic drivers; thus allowing the
userspace applications to take advantage of hardware accelerators. Cryptodev-linux uses "/dev/crypto"
interface to let kernel space hardware accelerator drivers become accessible from typical userspace
programs and libraries.

Example Code
The cryptodev example code is available in the cryptodev folder.

Cryptodev-linux APIs are defined in crypto/cryptodev.h.

 NOTE
 Need to install Linux kernel header.

 More information is available at Cryptodev-linux document:
http://cryptodev-linux.org/documentation.html

Watchdog Timer (WDT)

The WDT works like a watchdog function that can be enabled or disabled. When the WDT is enabled, but the
application does not acknowledge it, the system will reboot. You can set the ack time from a minimum of 1
sec to a maximum of 1 day; the default is 60 seconds. The NO WAY OUT option is disabled by default; once
the option is enabled, you will not be able to disable the watchdog. For this reason, if the watchdog daemon
crashes, the system will reboot after the timeout interval has passed.

http://cryptodev-linux.org/documentation.html

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 52

Config
You need to know which driver you’re using first. Assume that the watchdog driver’s name is "ds1374_wdt",
then you can use the modinfo command to check the information as follows:

moxa@Moxa:~$ sudo modinfo ds1374_wdt
filename: /lib/modules/4.4.0-cip-
uc5100+/kernel/drivers/watchdog/ds1374_wdt.ko
license: GPL
description: Maxim/Dallas DS1374 WDT Driver
author: Scott Wood <scottwood@freescale.com>
depends:
intree: Y
vermagic: 4.4.0-cip-uc5100+ mod_unload ARMv7 p2v8
parm: nowayout:Watchdog cannot be stopped once started, default=0
(bool)
parm: timer_margin:Watchdog timeout in seconds (default 60s) (int)

The parameter’s name is "nowayout" for NO WAY OUT and "timer_margin" for timeout setting. To change
the setting, you can add a conf file under the directory "/etc/modprobe.d/". For example, add a file
"/etc/modprobe.d/watchdog.conf" with the following content:

options ds1374_wdt nowayout=1 timer_margin=60

This changes the setting for "ds1374_wdt" driver with nowayout=1 and timeout=60 seconds.

Example Code
The example code is available in the watchdog folder.

WDT driver APIs are used via "ioctl" through a file descriptor. The methods are defined in
linux/watchdog.h.

The watchdog device node locate at "/dev/watchdog".

int fd = open("/dev/watchdog", O_WRONLY);
if (fd < 0) {
 perror("open watchdog failed");
 exit(EXIT_FAILURE);
}

API List
IOCTL Function WDIOC_KEEPALIVE
Description Writes to the watchdog device to keep the watchdog alive
Example ioctl(fd, WDIOC_KEEPALIVE, 0);

IOCTL Function WDIOC_GETTIMEOUT
Description Queries the current timeout

Example
int timeout;
ioctl(fd, WDIOC_GETTIMEOUT, &timeout);

IOCTL Function WDIOC_SETTIMEOUT

Description
Modifies the watchdog timeout
Default: 60 seconds

Example
int timeout = 60;
ioctl(fd, WDIOC_SETTIMEOUT, &timeout);

IOCTL Function WDIOC_GETSTATUS
Description Asks for the current status

Example
int flags;
ioctl(fd, WDIOC_GETSTATUS, &flags);

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 53

IOCTL Function WDIOC_SETOPTIONS

Description

Control the following aspects of the card's operation
• WDIOS_DISABLECARD: Turn off the watchdog timer
• WDIOS_ENABLECARD: Turn on the watchdog timer
• WDIOS_TEMPPANIC: Kernel panic on temperature trip
Note: In some older versions of OS, the watchdog driver may return an ERROR for
WDIOS_DISABLECARD and WDIOS_ENABLECARD. However, the settings still work as
expected.

Example
int options = WDIOS_DISABLECARD;
ioctl(fd, WDIOC_SETOPTIONS, &options);

IOCTL Function WDIOC_GETSUPPORT
Description Asks what the device can do

Example
struct watchdog_info ident;
ioctl(fd, WDIOC_GETSUPPORT, &ident);

 NOTE
 More information is available at Linux kernel document:

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

Real-time Clock (RTC)

The Real-time Clock is a computer clock that keeps track of the current time. RTC can be used to complete
time critical tasks. Using RTC can benefit from its lower power consumption and higher accuracy.

Example Code
The RTC example code is available in the rtc folder.

RTC APIs are used via "ioctl" through a file descriptor. The methods are defined in <linux/rtc.h>.

The rtc device node locate at "/dev/rtc0".

The APIs that read time from RTC and set RTC time are using a structure "struct rtc_time". It is defined in
<linux/rtc.h>:

struct rtc_time {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

Note that variable "tm_mon" starts with 0 and variable "tm_year" represents the number of years since
1900.

https://www.kernel.org/doc/Documentation/watchdog/watchdog-api.txt

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 54

API List
IOCTL Function RTC_RD_TIME
Description Reads time information from the RTC; returns the value of argument 3

Example
struct rtc_time rtc_tm;
ioctl(fd, RTC_RD_TIME, &rtc_tm);

IOCTL Function RTC_SET_TIME
Description Sets the RTC time. Argument 3 will be passed to the RTC.

Example
struct rtc_time rtc_tm;
ioctl(fd, RTC_SET_TIME, &rtc_tm);

 NOTE
 More information is available at Linux kernel document:

https://www.kernel.org/doc/Documentation/rtc.txt

Modbus

The Modbus protocol is a messaging structure used to establish master-slave/client-server communication
between intelligent devices. It is a de facto standard, truly open, and the most widely used network protocol
in industrial manufacturing environments. It has been implemented by hundreds of vendors on thousands of
different devices to transfer discrete/analog I/O and register data between control devices.

Example Code
We use "libmodbus" with current stable version v3.0.6 as our modbus package. The package is also
available from the following link: http://libmodbus.org/releases/libmodbus-3.0.6.tar.gz

To run the test program, we first need to build the "libmodbus" library. We can build it simply by running
the following commands:

$ cd modbus/libmodbus-3.0.6/
$./configure && make install

After build completes, the test program can be found at "tests" directory. The test program provides 3 types
of protocols (tcp/ tcppi/ rtu) which can be set by passing command line arguments.

The test program is client-server modeled. We should run the server program first, and then run the client
program from another terminal.

$ cd modbus/libmodbus-3.0.6/tests/
$./unit-test-server tcp

$ cd modbus/libmodbus-3.0.6/tests/
$./unit-test-client tcp

 NOTE
 More information is available at libmodbus document: http://libmodbus.org/documentation/

https://www.kernel.org/doc/Documentation/rtc.txt
http://libmodbus.org/documentation/

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 55

Eco-friendly Modes for Power Conservation
Moxa UC-3100 Series offers 3 operating modes: Active mode, Conservation mode, Scheduled Awakening mode. These
modes can be used to optimize power consumption, especially in remote deployments that lack a stable power source.
This section explains the procedure to set up the mx-power-mgmt utility to enable the ECO mode.

 NOTE
 ECO Mode is only available in UC-3100 Series hardware v.1.0.0 and higher with firmware v1.2 and above

required.

Using mx-power-mgmt
To be able to run the mx-power-mgmt command, you must use sudo or run the command with the root
permission. Use the # sudo mx-power-mgmt help command to display the menu page.

moxa@Moxa:~$ sudo mx-power-mgmt help
Usage:
 mx-power-mgmt [Command]...
Command:
 scheduled-awakening [time]
 Set system to scheduled-awakening mode.
 [time]: a number in range 30 ~ 864000
 conservation [time]
 [time]: a number in range 30 ~ 864000
 red-led [on|off|blink]
 Set MCU red led
 green-led [on|off]
 Set MCU green led
 wake-up
 Wake up from conservation mode
 mcu-upgrade
 Upgrade MCU firmware
 check-mode
 Check MCU current mode
 help
 Show the usage manual
 version
 Show MCU firmware and utility version
moxa@Moxa:~$

Scheduled Awakening Mode

If this mode is enabled, the power input to the CPU and cellular module is temporarily cut off until the
scheduled wake-up duration (in seconds).

sudo mx-power-mgmt scheduled-awakening 30

moxa@Moxa:~$ sudo mx-power-mgmt scheduled-awakening 30
[sudo] password for moxa:
Execute user scheduled-awakening preinstall configuration (Command: /etc/power-
management-utils/config/scheduled_awakening_preinst)
Execute scheduled-awakening function configuration (Command: /etc/power-
management-utils/executable/scheduled_awakening)

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 56

Conservation Mode

If this mode is enabled, the CPU frequency is reduced to 300 MHz and all I/Os are turned Off except CAN
port for UC-3121. But users can still turn on each I/O individually. The SYS LED will continue to blink as an
indication that the computer is under conservation mode.

The computer can be awakened from conservation mode according to the time you set. If you set the timer
to 0, the system will remain in the conservation mode until it is woken up by a Wake-up Command.

sudo mx-power-mgmt conservation 30

moxa@Moxa:~$ sudo mx-power-mgmt conservation 30
[sudo] password for moxa:
Execute user conservation preinstall configuration (Command: /etc/power-
management-utils/config/conservation_preinst)
Execute conservation function configuration (Command: /etc/power-management-
utils/executable/conservation)
Network already stopped
Clearing state...
moxa@Moxa:~$

sudo mx-power-mgmt conservation 0

moxa@Moxa:~$ sudo mx-power-mgmt conservation 0
Execute user conservation preinstall configuration (Command: /etc/power-
management-utils/config/conservation_preinst)
Execute conservation function configuration (Command: /etc/power-management-
utils/executable/conservation)
WARNING: If you set timer as 0, it will not wake up automatically
You need to use '# mx-power-mgmt wake-up' command to wake up system by yourself
Do you want to continue? (N/y)
y
Enter into conservation mode

Setting the SYS LEDs Using mx-power-mgmt

The SYS LEDs on the UC-3100 computer are connected both to the system and the power management
MCU. Hence, you can control the MCU to set the SYS LED through the mx-power-mgmt utility. There are
two SYS LEDs on the MCU: Green and Red. Before turning on/off the LEDs using the mx-power-mgmt
utility, ensure that the SYS LEDs are turned off on the system side using the command # mx-led-ctl -p
1 -i 1 off. You can then use the following mx-power-mgmt commands to control the SYS LEDs.

Command Description
sudo mx-power-mgmt green-led on Turn on the SYS Green LED
sudo mx-power-mgmt green-led off Turn off the SYS Green LED
sudo mx-power-mgmt red-led on Turn on the SYS Red LED
sudo mx-power-mgmt red-led off Turn off the SYS Red LED
sudo mx-power-mgmt red-led blink Set the SYS Red LED to the blinking mode

Wake-up From Conservation Mode

The computer can be awakened from the Conservation mode according to a time interval that you set. If
you set the timer interval to 0, the computer will stay in this mode until it is woken up using the # sudo
mx-power-mgmt wake-up command.

moxa@Moxa:~$ sudo mx-power-mgmt wake-up
Execute conservation wake up function configuration (Command: /etc/power-
management-utils/executable/conservation_wake_up)
Execute user conservation wake up postinst configuration (Command: /etc/power-
management-utils/config/conservation_wake_up_postinst)
moxa@Moxa:~$

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 57

MCU Firmware Upgrade

If there is a new version of the MCU firmware, the system will automatically update the MCU after a reboot
following the update of the system using the apt-get dist-upgrade and apt-get upgrade
commands. You can also manually update the MCU firmware with the following command:

sudo mx-power-mgmt mcu-upgrade

moxa@Moxa:~$ sudo mx-power-mgmt mcu-upgrade
Start to upgrade MCU firmware
MCU enter into BSL mode.
Reset MCU
MCU firmware upgrade completed
moxa@Moxa:~$

Checking the MCU mode

MCU has four modes: power on, active, scheduled awakening, and conservation. In general, the power on
mode is equivalent to active mode. The difference is that active means that your system is awakened from
conservation or scheduled awakening.

sudo mx-power-mgmt check-mode

moxa@Moxa:~$ sudo mx-power-mgmt check-mode
active mode
moxa@Moxa:~$

Viewing the Utility and MCU Firmware Version
sudo mx-power-mgmt version

moxa@Moxa:~$ sudo mx-power-mgmt version
MCU firmware version 1.0.0S04
mx-power-mgmt version 1.0.0
moxa@Moxa:~$

User-defined Actions

The mx-power-mgmt utility allows customers to specify the I/O peripherals that they want to turn off in
the conservation mode (this will affect the power consumption). The utility also supports the execution of
user programs before entering the Conservation and Scheduled Awakening modes or start a service to keep
a program running after wake-up.

To specify the I/O peripheral that you want to turn off in the conservation mode, modify the following file:

vi /etc/power-management-utils/config/conservation_config

System Leds
CONFIG_TURN_OFF_LED=y
System Loading
CONFIG_STOP_WIFI_SIGNALD_SERVICE=y
CONFIG_STOP_CELLULAR_SIGNALD_SERVICE=y
CONFIG_STOP_PUSH_BUTTON_SERVICE=y
CONFIG_LOW_CPU_FREQUENCY=y
Ethernet
CONFIG_POWER_OFF_ETHERNET_ETH0=y
CONFIG_POWER_OFF_ETHERNET_ETH1=y
Cellular Wireless
CONFIG_TURN_OFF_CELLULAR_USB=y
CONFIG_POWER_OFF_CELLULAR=y
Others
CONFIG_TURN_OFF_USB_BUS=y
CONFIG_PULL_DOWN_GPIO=y

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 58

Wake Up Time
CONFIG_DEFAULT_WAKE_UP_TIME=30

WiFi Wireless (For UC-3111-LX and UC-3121-LX series model)
CONFIG_POWER_SAVE_WIFI=y

To run your own program to back up or shut down your service(s) before entering the Conservation or
Scheduled Awakening, edit the following files.

vi /etc/power-management-utils/config/conservation_preinst
vi /etc/power-management-utils/config/scheduled_awakening_preinst

To start a service to keep your program running after the system wake-up from Conservation or Scheduled
Awakening mode, edit the following files:

e.g., # vi /etc/power-management-utils/config/conservation_wake_up_postinst
e.g., # vi /etc/power-management-utils/config/scheduled_awakening_wake_up_postinst

Moxa Platform Libraries
Moxa provides several libraries for developing customized applications. In this section, we will show how to
utilize these libraries.

Example codes are available at: https://github.com/Moxa-Linux

Error Numbers

Moxa defines exclusive error numbers for Moxa libraries. It works with other Moxa library codes and is
useful for checking the result of executing an API.

If you call an API, you can check the return value to take particular action in response.

int num_of_interfaces;
ret = mx_get_number_of_interfaces(&num_of_interfaces);
if (ret == E_SYSFUNCERR){
 // do something...
}

Usage
• Install the package "libmoxa-errno-dev"

• Include header <moxa/mx_errno.h>

Error Code List
Error Code Value Description
E_SUCCESS 0 Exit successfully
E_SYSFUNCERR -1 Error occurs in system functions (e.g., open)
E_INVAL -2 Invalid input
E_LIBNOTINIT -3 Library is not initialized
E_UNSUPCONFVER -4 Config version is not supported for the library
E_CONFERR -5 Error in config file
E_GPIO_NOTEXP -20 The GPIO is not exported
E_GPIO_UNKDIR -21 Unknown GPIO direction get
E_GPIO_UNKVAL -22 Unknown GPIO value get
E_BUZZER_PLAYING -30 The buzzer is already playing
E_UART_NOTOPEN -50 The UART port is not opened
E_UART_GPIOIOCTLINCOMP -51 GPIO and IOCTL are incompatible for UART
E_UART_UNKMODE -52 Unknown UART mode get
E_UART_EXTBAUDUNSUP -53 Extended baudrate is not supported
E_PBTN_NOTOPEN -70 The push button is not opened

https://github.com/Moxa-Linux

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 59

Platform Information

Moxa platform info library is used to get information of interfaces on the device, which is useful to know the
device’s capability before developing applications.

Usage
• Install the package "libmoxa-platform-info-dev"

("libjson-c-dev" package will be installed automatically when install "libmoxa-platform-info-dev")

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-platform-info-dev

• Include header <moxa/mx_platform_info.h> and <json-c/json.h>

• Link the libraries "-ljson-c" and "-lmx_platform_info" while compiling

API List
Function Prototype int mx_get_number_of_interfaces(int *num_of_interfaces);
Description Get the number of interfaces supported on the device
Parameters • num_of_interfaces: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int num_of_interfaces;
mx_get_number_of_interfaces(&num_of_interfaces);

Function Prototype int mx_get_platform_interface(char ***profiles);
Description Get the interfaces supported on the device

Parameters
• profiles: a pointer which points to a place for storing output value

 the list of platform interfaces, in "char **" format.
 e.g. { "led-control", … }

Return Value • 0 on success
• negative integers as error number

Example
char **profiles;
mx_get_platform_interface(&profiles);

Function Prototype int mx_free_platform_interface(char **profiles);
Description Free the memory space of profiles allocated by "mx_free_platform_interface" API
Parameters • profiles: profiles from "mx_free_platform_interface" API

Return Value • 0 on success
• negative integers as error number

Example mx_free_platform_interface(profiles);

Function Prototype int mx_get_profile(const char *interface, struct json_object **profile);
Description Get the profile of target interface

Parameters

• interface: the name of the target interface
 "buzzer-control"
 "dio-control"
 "uart-control"
 "led-control"
 "push-button"

• profile: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
struct json_object *profile;
mx_get_profile("led-control", &profile);

Buzzer

Moxa buzzer control library can be used to control the buzzer on the device. We provide interfaces for
controlling the buzzer to beep for a certain period or keep beeping till it is switched off.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 60

 NOTE
• Moxa buzzer control library should be used carefully, the buzzer must be stopped before the process

ends. Or the buzzer may beep without control.
• The Moxa buzzer control library is supported only in the UC-8100A-ME-T Series.

Usage
• Need package "libmoxa-buzzer-control-dev"

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-buzzer-control-dev

• Include header <moxa/mx_buzzer.h>

• Link library "-lmx_buzzer_ctl" while compiling

API List
Function Prototype int mx_buzzer_init(void);
Description Initialize Moxa buzzer control library
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_buzzer_init();

Function Prototype int mx_buzzer_play_sound(unsigned long duration);
Description Play the buzzer

Parameters
• duration: the duration time in seconds

 range: 1-60
 0 for keep beeping

Return Value • 0 on success
• negative integers as error number

Example mx_buzzer_play_sound(3);

Function Prototype int mx_buzzer_stop_sound(void);
Description Stop the buzzer
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_buzzer_stop_sound();

Digital I/O

Moxa DIO control library can be used to control digital I/O interface. Including getting states from Direct
Input and Output ports, setting state of Direct Output ports.

Usage
• Need package "libmoxa-dio-control-dev"

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-dio-control-dev

• Include header <moxa/mx_dio.h>

• Link library "-lmx_dio_ctl" while compiling

• Need to call "mx_dio_init" before using other APIs

API List
Function Prototype int mx_dio_init(void);
Description Initialize Moxa DIO control library
Parameters N/A

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 61

Function Prototype int mx_dio_init(void);

Return Value • 0 on success
• negative integers as error number

Example mx_dio_init();

Function Prototype int mx_dout_set_state(int doport, int state);
Description Set state for target Direct Output port

Parameters

• doport: target DOUT port number
• state:

 DIO_STATE_LOW: low
 DIO_STATE_HIGH: high

Return Value • 0 on success
• negative integers as error number

Example mx_dout_set_state(0, DIO_STATE_HIGH);

Function Prototype int mx_dout_get_state(int doport, int *state);
Description Get state from target Direct Output port

Parameters • doport: target DOUT port number
• state: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int state;
mx_dout_get_state(0, &state);

Function Prototype int mx_din_get_state(int diport, int *state);
Description Get state from target Direct Input port

Parameters • diport: target DIN port number
• state: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int state;
mx_din_get_state(0, &state);

Function Prototype int mx_din_set_event(int diport, void (*func)(int diport), int mode,
unsigned long duration);

Description Set an action for an event occurred of target Direct Input port

Parameters

• diport: target DIN port number
• func: a function pointer which will be invoked on DIN event detected
• mode: DIN event mode

 DIN_EVENT_CLEAR
 DIN_EVENT_LOW_TO_HIGH
 DIN_EVENT_HIGH_TO_LOW
 DIN_EVENT_STATE_CHANGE

• duration: The during time that the event occurred to trigger action
 range: 40 - 3600000 (ms)
 0 means no duration

Return Value • 0 on success
• negative integers as error number

Example
void (*fp)(int);
mx_din_set_event(0, fp, DIN_EVENT_STATE_CHANGE, 100);

Function Prototype int mx_din_get_event(int diport, int *mode, unsigned long *duration);
Description Get event setting of target Direct Input port

Parameters
• diport: target DIN port number
• mode: a pointer which points to a place for storing output value
• duration: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int mode;
unsigned long duration;
mx_din_get_event(0, &mode, &duration);

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 62

UART

Moxa UART can be used to set the mode of UART ports and transmit data via UART ports.

Usage
• Need package "libmoxa-uart-control-dev"

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-uart-control-dev

• Include header <moxa/mx_uart.h>

• Link library "-lmx_uart_ctl" while compiling

• Need to call "mx_uart_init" before using other APIs

API List
Function Prototype int mx_uart_init(void);
Description Initialize Moxa UART control library
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_uart_init();

Function Prototype int mx_uart_set_mode(int port, int mode);
Description Set mode of target UART port

Parameters

• port: target UART port
• mode:

 UART_MODE_RS232
 UART_MODE_RS485_2W
 UART_MODE_RS422_RS485_4W

Return Value • 0 on success
• negative integers as error number

Example mx_uart_set_mode(0, UART_MODE_RS232);

Function Prototype int mx_uart_get_mode(int port, int *mode);
Description Get mode of target UART port

Parameters • port: target UART port
• mode: a pointer for storing output

Return Value • 0 on success
• negative integers as error number

Example
int mode;
mx_uart_get_mode(0, &mode);

Function Prototype int mx_uart_open(int port);
Description Open target UART port
Parameters • port: target UART port

Return Value • 0 on success
• negative integers as error number

Example mx_uart_open(0);

Function Prototype int mx_uart_close(int port);
Description Close target UART port
Parameters • port: target UART port

Return Value • 0 on success
• negative integers as error number

Example mx_uart_close(0);

Function Prototype int mx_uart_read(int port, char *data, size_t count);
Description Read data from target UART port

Parameters
• port: target UART port
• data: memory location of data to be stored
• count: read size

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 63

Function Prototype int mx_uart_read(int port, char *data, size_t count);

Return Value • positive integers means size of data read
• negative integers as error number

Example
char data[256];
mx_uart_read(0, data, 256);

Function Prototype int mx_uart_write(int port, char *data, size_t count);
Description Write data from target UART port

Parameters
• port: target UART port
• data: memory location of data to be written
• count: write size

Return Value • positive integers indicate the size of data read
• negative integers as error number

Example
char data[256];
mx_uart_read(0, data, 256);

Function Prototype int mx_uart_set_baudrate(int port, int baudrate);
Description Set the baudrate of target UART port

Parameters • port: target UART port
• baudrate: The baudrate

Return Value • 0 on success
• negative integers as error number

Example mx_uart_set_baudrate(0, 115200);

Function Prototype int mx_uart_get_baudrate(int port, int *baudrate);
Description Get the baudrate of target UART port

Parameters • port: target UART port
• baudrate: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int baudrate;
mx_uart_get_baudrate(0, &baudrate);

Function Prototype int mx_uart_set_databits(int port, int bits);
Description Set the data bits of target UART port

Parameters • port: target UART port
• bits: The data bits

Return Value • 0 on success
• negative integers as error number

Example mx_uart_set_databits(0, 8);

Function Prototype int mx_uart_get_databits(int port, int *bits);
Description Get the data bits of target UART port

Parameters • port: target UART port
• bits: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int bits;
mx_uart_get_databits(0, &bits);

Function Prototype int mx_uart_set_stopbits(int port, int bits);
Description Set the stop bits of target UART port

Parameters • port: target UART port
• bits: The stop bits

Return Value • 0 on success
• negative integers as error number

Example mx_uart_set_stopbits(0, 1);

Function Prototype int mx_uart_get_stopbits(int port, int *bits);
Description Get the stop bits of target UART port

Parameters • port: target UART port
• bits: a pointer which points to a place for storing output value

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 64

Function Prototype int mx_uart_get_stopbits(int port, int *bits);

Return Value • 0 on success
• negative integers as error number

Example
int bits;
mx_uart_get_stopbits(0, &bits);

Function Prototype int mx_uart_set_parity(int port, int parity);
Description Set the parity of target UART port

Parameters • port: target UART port
• parity: The parity

Return Value • 0 on success
• negative integers as error number

Example mx_uart_set_parity(0, 0);

Function Prototype int mx_uart_get_parity(int port, int *parity);
Description Get the parity of target UART port

Parameters • port: target UART port
• parity: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int parity;
mx_uart_get_parity(0, &parity);

LED

LED APIs can control the LEDs on the device, which can be ON, OFF, or BLINK. LEDs on a device are
separated to types and groups. There are 2 types of LED: Signal LED and Programmable LED. Each type
may contain several groups, and each group may contain several LEDs.

Usage
• Install package "libmoxa-led-control-dev"

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-led-control-dev

• Include the header <mx_led.h>

• Link the library "-lmx_led_ctl" while compiling

• Call "mx_led_init" before using other APIs

API List
Function Prototype int mx_led_init(void);
Description Initialize Moxa LED control library
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_led_init();

Function Prototype int mx_led_get_num_of_groups(int led_type, int *num_of_groups);
Description Get the number of groups of a LED type

Parameters
• led_type:

 LED_TYPE_SIGNAL or LED_TYPE_PROGRAMMABLE
• num_of_groups: a pointer which points to a place for storing output value

Return Value • 0 on success
• negative integers as error number

Example
int num_of_groups;
mx_led_get_num_of_groups(LED_TYPE_SIGNAL, &num_of_groups);

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 65

Function Prototype
int mx_led_get_num_of_leds_per_group(int led_type, int
*num_of_leds_per_group);

Description Get the number of LEDs per group of a LED type

Parameters

• led_type:
 LED_TYPE_SIGNAL or LED_TYPE_PROGRAMMABLE

• num_of_leds_per_group: a pointer which points to a place for storing output
value

Return Value • 0 on success
• negative integers as error number

Example
int num_of_leds_per_group;
mx_led_get_num_of_leds_per_group(LED_TYPE_SIGNAL,
&num_of_leds_per_group);

Function Prototype int mx_led_set_brightness(int led_type, int group, int index, int state);
Description Set LED state on, off, blink

Parameters

• led_type:
 LED_TYPE_SIGNAL or LED_TYPE_PROGRAMMABLE

• group: group number
• index: LED index
• state:

 LED_STATE_OFF or LED_STATE_ON or LED_STATE_BLINK

Return Value • 0 on success
• negative integers as error number

Example
mx_led_set_brightness(LED_TYPE_PROGRAMMABLE, 1, 1,
LED_STATE_ON);

Function Prototype int mx_led_set_all_off(void);
Description Set all LED off
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_led_set_all_off();

Function Prototype int mx_led_set_all_on(void);
Description Set all LED on
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_led_set_all_on();

Push Button

Push button APIs.

Usage
• Install package "libmoxa-push-button-dev"

moxa@Moxa:~$ sudo apt-get install \
 libmoxa-push-button-dev

• Include header <moxa/mx_pbtn.h>

• Link library "-lmx_push_btn" while compiling

• Needs to call "mx_pbtn_init" before using other APIs

 NOTE
 Remember to terminate the push button daemon that run by the system. Or you might accidentally trigger

some system functions which defined in the daemon when testing the button.

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 66

 The push button daemon is called moxa-pbtnd. You can terminate the process by using the systemctl
stop moxa-push-button command.

API List
Function Prototype int mx_pbtn_init(void);
Description Initialize Moxa push button library
Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_pbtn_init();

Function Prototype int mx_pbtn_open(int type, int index);
Description Open a push button by button type and index

Parameters
• type:

 BUTTON_TYPE_SYSTEM or BUTTON_TYPE_USER
• index: button index

Return Value • negative integers as error number
• 0 or positive integer: button ID for manipulate the button by other APIs

Example
int btn_id;
btn_id = mx_pbtn_open(BUTTON_TYPE_USER, 1);

Function Prototype int mx_pbtn_close(int btn_id);
Description Close a push button
Parameters • btn_id: button ID returned by "mx_pbtn_open"

Return Value • 0 on success
• negative integers as error number

Example mx_pbtn_close(0);

Function Prototype int mx_pbtn_start(int btn_id);
Description Start listening on a push button
Parameters • btn_id: button ID returned by "mx_pbtn_open"

Return Value • 0 on success
• negative integers as error number

Example mx_pbtn_start(0);

Function Prototype int mx_pbtn_stop(int btn_id);
Description Stop listening on a push button
Parameters • btn_id: button ID returned by "mx_pbtn_open"

Return Value • 0 on success
• negative integers as error number

Example mx_pbtn_stop(0);

Function Prototype int mx_pbtn_wait(void);

Description Check if there is any button being listened on, if so, hang the process. This API can
be used for daemon.

Parameters N/A

Return Value • 0 on success
• negative integers as error number

Example mx_pbtn_wait();

Function Prototype int mx_pbtn_is_pressed(int btn_id);
Description Get the state of a button
Parameters • btn_id: button ID returned by "mx_pbtn_open"

Return Value
• negative integers as error number
• 0 if the button is released
• 1 if the button is pressed

Example mx_pbtn_is_pressed(0);

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 67

Function Prototype int mx_pbtn_pressed_event(int btn_id, void (*func)(int));
Description Register action on button pressed

Parameters • btn_id: button ID returned by "mx_pbtn_open"
• func: a function pointer which will be invoked on button pressed

Return Value • 0 on success
• negative integers as error number

Example
void (*fp)(int);
mx_pbtn_pressed_event(0, fp);

Function Prototype int mx_pbtn_released_event(int btn_id, void (*func)(int));
Description Register action on button released

Parameters • btn_id: button ID returned by "mx_pbtn_open"
• func: a function pointer which will be invoked on button released

Return Value • 0 on success
• negative integers as error number

Example
void (*fp)(int);
mx_pbtn_released_event(0, fp);

Function Prototype
int mx_pbtn_hold_event(int btn_id, void (*func)(int), unsigned long
duration);

Description Register action on button hold

Parameters

• btn_id: button ID returned by "mx_pbtn_open"
• func: a function pointer which will be invoked on button hold
• duration: Time for which the button is held to trigger an action (in seconds)

 range: 1-3600
 0 for keep triggering every second

Return Value • 0 on success
• negative integers as error number

Example
void (*fp)(int);
mx_pbtn_hold_event(0, fp, 60);

Power Ignition Function (UC-8540 only)
The Power Ignition function controls the computer’s power behavior. This function detects the ignition signal
status and allows users to control the on/off delay time setting through Moxa’s Power Ignition Software
Utility.

The default setting of power ignition function is disabled. You could use the Moxa power ignition utility to
enable the function.

Use the mx_igt –h command for help instructions

mx_igt -h
Moxa power ignition utility

Usage:
 /sbin/mx_igt [Options]

Options:
-l , list power ignition configuration
-s [on|off] , setting power on/off function
-t <time> , setting delay time(seconds) of power on/off
-e , enable power ignition
-d , disable power ignition

Example:
mx_igt -l, power ignition configuration state

Moxa Industrial Linux 1 (Debian 9) Manual for Arm-based Computers 68

mx_igt -s on -t 10, set 10 seconds delay time for power on
mx_igt -d, disable power ignition function

To enable the power ignition function, use the following command:

mx_igt -e
Ignition function is ENABLE

To list the configurations of current power ignition setting, use the following command:

mx_igt -l
Power ignition configuration:

Status : Disable (val=0x00)
Signal : OFF (val=0x00)
Delay time of power on : 3 (sec)
Delay time of power off : 3 (sec)

For example, to set 10 seconds delay time for power on

mx_igt -s on -t 10

You will see the delay time of power on is set to 10 seconds:

mx_igt -l
Power ignition configuration:

Status : Disable (val=0x00)
Signal : OFF (val=0x00)
Delay time of power on : 10 (sec)
Delay time of power off : 3 (sec)

To disable the power ignition function, use the following command:

mx_igt -d
Ignition function is DISABLE

To utilize the power ignition function, you need to use the following command to activate service first

systemctl unmask mx_igt
reboot

After reboot, use the following command to enable ignition function.

mx_igt -e
Ignition function is ENABLE

